
Garbage Collection

class Dillo:

def __init__(self, length: int, is_dead: bool):

self.length = length

self.is_dead = is_dead

all_dillos = [] # ArrayList, starting length 4

all_dillos.append(Dillo(10, True))

Dillo(8, False)

tiny_dillo = Dillo(5, False)

all_dillos.append(tiny_dillo)

DRAWTHE MEMORY
DIAGRAM

ENY
HEAP

Tt
8
F

TINY_DILLON
5

GARBAGE

Garbage: data in the heap that the program cannot access

=> Garbage collection: process of finding grabage objects
and removing them

=> We can get to objects in the heap by "following" the names in the environment (and
other objects they reference)

=> But here we have an object that isn't referenced by anything...

Let's think back to how objects are represented in
memory...

all_dillos = [] # ArrayList, starting length 4

all_dillos.append(Dillo(10, True))

Dillo(8, False)

tiny_dillo = Dillo(5, False)

all_dillos.append(tiny_dillo)

env heap
all_dillos ------> @1001 @ 1001 ArrayList(data:@1002, start:0, end:1, size:2, cap:4)

tiny_dillo ------> @1008 @ 1002 @1006

@ 1003 @1008

@ 1004

@ 1005

@ 1006 Dillo(length: 10, is_dead: True)

@ 1007 Dillo(length: 8, is_dead: False)

@ 1008 Dillo(length: 5, is_dead: False)

@ 1009 free

@ 1010 free

@ 1011 free

@ 1012 free

ADDRI
GARBAGE ARRAY

NO
SPACE

NO
RESERV

NO FORARR

YES 1NOV

SPACES NOT BEINGUSEDHow to find garbage

 - Follow all the names => everything we can find is by definition not garbage

 - Everything else that's left is garbage

=> Of the algorithm we've seen, what is this
similar to?
 How it really works: GC uses DFS for each name in the

environment
 - Mark each location you find as "not garbage"
 - Anything not marked as garbage => can remove it

What happens if we remove from the list?

all_dillos = [] # ArrayList, starting length 4

all_dillos.append(Dillo(10, True))

Dillo(8, False)

tiny_dillo = Dillo(5, False)

all_dillos.append(tiny_dillo)

all_dillos[0] = None # Remove first item

env heap
all_dillos ------> @1001 @ 1001 ArrayList(data:@1002, start:0, end:1, size:2, cap:4)

tiny_dillo ------> @1008 @ 1002 @1006

@ 1003 @1008

@ 1004

@ 1005

@ 1006 Dillo(length: 10, is_dead: True)

@ 1007 Dillo(length: 8, is_dead: False)

@ 1008 Dillo(length: 5, is_dead: False)

@ 1009 free

@ 1010 free

@ 1011 free

@ 1012 free

Ignacy
Python's

µ FREE

41
If we run the line:

 all_dillos[0] = None

... we remove a reference to the Dillo with length 10. There are no other references
to it, so this becomes garbage. Python (or Java)'s GC process will notice this and
free up the memory, so it can be used for other things!

Extra notes on this example
 1. To remove the first element from a list in Python, it's better to write "all_dillos.pop(0)". This
removes the first element, and Python will shift all other elements up, which is usually what we want (in this
case, we don't care about the shifting).

2.What if we did all_dillos[1] = None instead? Would this create garbage? No! The Dillo with length
5 is still referenced by tiny_dillo, so it's still reachable in the environment, and therefore not garbage.

What Generates Garbage?

Example: Find the average of a list of positive numbers

Example 1

nums = [67, 45, 0, 66, -21, 50]

pos_nums = [x for x in nums if x > 0]

avg_val = sum(pos_nums) / len(pos_nums)

print(avg_val)

FILTEN

Nuns

PosNuns

What about this program? Does this create garbage?

No. All of the objects created here (eg. the two lists) are assigned to
names, so they stay in the environment.

Consider, though: do we want both of these lists in the environment?
pos_nums is just a temporary variable that we used to get avg_val....

Perhaps we could design this program a bit differently so we don't keep
this extra variable around? We'll discuss this more next class...

Example: what would happen if we resized the arraylist to size 8?

env heap
all_dillos ------> @1001 @ 1001 ArrayList(data:@1002, start:0, end:1, size:2, cap:4)

tiny_dillo ------> @1008 @ 1002 @1006

@ 1003 @1008

@ 1004

@ 1005

@ 1006 Dillo(length: 10, is_dead: True)

@ 1007 Dillo(length: 8, is_dead: False)

@ 1008 Dillo(length: 5, is_dead: False)

@ 1009 free

@ 1010 free

@ 1011 free

@ 1012 free

@ 1013 free

@ 1014 free

@ 1015 free

@ 1016 free

@ 1017 free

@ 1018 free

@ 1019 free

@ 1020 free

4

FUN

1,8
a

If we need to resize the array:

 - Arrays must be contiguous, so need to make a new array of size 8 in next
available place in memory that has 8 slots

 - References must be copied/updated to reflect new array

 - Old array is no longer referenced anywhere, so it becomes garbage

