Recap: Embedding trees/heaps in Arrays

| O
vy
v 3
/—7&&“————\»
7 2

J79[¢[3]¥]2/]~ -\

For some node at index 1i:

- left (i) is at (1 * 2) + 1

- right(i) is at (1 * 2) + 2

- parent (i) is at floor((i - 1)/2)

How to insert?
In the code version: always add new
elements to the next available space
=> Keeps balanced
=> Always know how to find next slot (just
the end of the array)

/6
/ \
?3
/1 7\
7u

z
7*

W Aee rie Mears
Foc. THese preesl

% 2.

Why not keep stuff condensed? Need to
respect parent/child formulas to match
the structure of the tree

=> Without spaces, parent, left/right
formulas will break

How would we implement delete max?
Let’s try something similar to insert, where we swap

- Requirements
nodes up after removing an element: . Maintain balance
/ e Don’t leave open array slots
(to keep with current code)
/ﬁ * Result must be a heap

| etz =]

Z- ZULWVE MAL LemovE MAY M:

{ . /7\

- = ru
/\

7 1 2

Cwphancep!

\ /
/?/ééz

/ /|

7) 7

Problem: If use the same remove + swap from here, can end up with unbalanced tree
=> Need to do delete without creating gaps

=> If we can just swap values within existing cells in use, can avoid gaps
=> Leverages array structure!

We didn’t implement remove_max, but here’s the intuition:
- If we’re removing an element, the resulting array must be
one smaller than before

- Removing the max element creates a hole => swap the last

element (ie, the one that would get “abandoned” if we were to : : L
shrink the array) to the top (in the hole left by the max) Z / s~
- Swap this new top element down until the result is a heap é / /

— 1

I/- v
This idea leverages the same principles as insert, but involves
swapping in a different direction. Similar to how we knew
where to add a new element when inserting into the heap, we @ @
leverage the array to know where to find a new element to _\//
start swapping down (ie, last one)
el 72! |"

O Lmove 1p
D Goap (ST (7) 70 FnolT

B S 7 pow oM et T
L HELP

Kecap: Now YO Thwe ARovT A2nAl(

Essential: have items in predictable, and computable, locations in
memory

=> “where is the i’th element”

/N

Nasw M Azm/y Licr b0 (e
7\/A_PN S

Use predictable Use predictable
location to get from location to

hash value to some => Ttems in navigate between

Use predictable
location for get(i)

specific index consecutive parent/child
}) locations in memory nodes
=> Not all indices
are used Y\\ => Positions
=> Positions quﬁLLf correspond to
correspond to “array _ where we are in
slots” TNwk Aot tree
ShFrine G
PO OTA

Important to think about

- Ways different data structures can be used

- How the underlying data structure (arrays, in this case)
can matter for different applications

Do all binary trees belong in arrays? What about BSTs?

f e T 7 s

Z What’s questions do you need to ask
to decide if this is a good idea?

/ \ Z Here’s a way this tree could be balanced.

Try it: think about how the array structure would

/ ; / \ need to change if we made this change.

What if (1) and (3) had lots of child nodes? With an

/ "(array, we’d need to do a lot of shifting nodes
around to make this work! For cases like this, it
/ makes more sense to use a node-based
representation (ie, the traditional recursive data
structure approach we’ve seen before), where we
j just need to alter the parent/child references.

Overall: think about how are going to use the data structure
= > What operations do you need to perform (at a high level)
=> For BSTs: need to keep the BST ordered and balanced

=> How does that translate into operations on the data

structure
=> If we used an array, we would need to shift a lot of

elements around to keep the BST balanced!

import math

implementation of a max heap

class Heap:

def

def

def

def

def

def

def

__init__(self):

self.data = []
self.size = 0
__str__(self):

string representation is the underlying list
return str(self.data)

parent_index(self, of_index):

compute parent index of given index. Assumes of_index > @
return math.floor((of_index - 1) / 2)

swap(self, index1, index2):

"""swaps values in index1 and index2 within self.data
tmp = self.data[index1]

self.data[index1] = self.data[index2]
self.data[index2] = tmp

insert(self, new_elt):
"""insert element into the heap
self.data.append(new_elt)
self.sift_up(self.size)
self.size += 1

sift_up(self, from_index):

swap element in from_index up heap until it is in the right place
if from_index > 0:
parent = self.parent_index(from_index)
if self.data[from_index] > self.data[parent]:
self.swap(parent, from_index)
self.sift_up(parent)

sift_up_while(self, from_index):
"""a while-loop based version of sift_up"""
if from_index > 0:
curr_index = from_index
parent = self.parent_index(curr_index)
while (curr_index > 0) and \
(self.dataf[curr_index] > self.data[parent]):
self.swap(parent, curr_index)
curr_index = parent
parent = self.parent_index(curr_index)

Note: this version repeats last two lines, unlike the recursive one

Heaps Implementation with Arrays

