
Recap: Embedding trees/heaps in Arrays

Why not keep stuff condensed? Need to
respect parent/child formulas to match
the structure of the tree

=> Without spaces, parent, left/right
formulas will break

For some node at index i:

 - left(i) is at (i * 2) + 1

 - right(i) is at (i * 2) + 2

 - parent(i) is at floor((i - 1)/2)

How to insert?

In the code version: always add new
elements to the next available space

 => Keeps balanced

 => Always know how to find next slot (just
the end of the array)

WHAT ARE THE ARRAYS
FOR THESE TREES

10 6

É ft
to

I

1101613141211 1 HIIIII

16 10121
6 631410

l

IIX six

Requirements

Maintain balance
•
Don’t leave open array slots •
(to keep with current code)

Result must be a heap•

How would we implement delete_max?

Let’s try something similar to insert, where we swap
nodes up after removing an element:

Problem: If use the same remove + swap from here, can end up with unbalanced tree

=> Need to do delete without creating gaps

=> If we can just swap values within existing cells in use, can avoid gaps

	 	 => Leverages array structure!

We didn’t implement remove_max, but here’s the intuition:

 - If we’re removing an element, the resulting array must be
one smaller than before

 - Removing the max element creates a hole => swap the last
element (ie, the one that would get “abandoned” if we were to
shrink the array) to the top (in the hole left by the max)

 - Swap this new top element down until the result is a heap

This idea leverages the same principles as insert, but involves
swapping in a different direction. Similar to how we knew
where to add a new element when inserting into the heap, we
leverage the array to know where to find a new element to
start swapping down (ie, last one)

10T

Ft
REMOVEMAX REMOVEMAYIAIN

9104 791 7
106

11 11

61 a g 1,1
it
a

t t t t unbalanced

Damini
k
Dai

REMOVE 10
SWAPLAST 7 TOFRONT

SWAP 7 DOWN UNTILRESULT
IS HEAP

IT

Essential: have items in predictable, and computable, locations in
memory

 => “where is the i’th element”

Use predictable
location to
navigate between
parent/child
nodes

=> Positions
correspond to
where we are in
tree

Use predictable
location to get from
hash value to some
specific index

 => Not all indices
are used

=> Positions
correspond to “array
slots”

Use predictable
location for get(i)

=> Items in
consecutive
locations in memory

Important to think about

 - Ways different data structures can be used

 - How the underlying data structure (arrays, in this case)
can matter for different applications

RECAP HOW TO THINK ABOUT ARRAYS

AIMPP ARRAY
LIST

XP
TREE

HASHSET

Kusuary
THINKABOUT
5 7 1 459

Do all binary trees belong in arrays? What about BSTs?

What’s questions do you need to ask
to decide if this is a good idea?

Overall: think about how are going to use the data structure

 = > What operations do you need to perform (at a high level)

 => For BSTs: need to keep the BST ordered and balanced

 => How does that translate into operations on the data
structure

 => If we used an array, we would need to shift a lot of
elements around to keep the BST balanced!

Here’s a way this tree could be balanced.

Try it: think about how the array structure would
need to change if we made this change.

What if (1) and (3) had lots of child nodes? With an
array, we’d need to do a lot of shifting nodes
around to make this work! For cases like this, it
makes more sense to use a node-based
representation (ie, the traditional recursive data
structure approach we’ve seen before), where we
just need to alter the parent/child references.

import math

"""implementation of a max heap"""
class Heap:

def __init__(self):
self.data = []
self.size = 0

def __str__(self):
"""string representation is the underlying list"""
return str(self.data)

def parent_index(self, of_index):
"""compute parent index of given index. Assumes of_index > 0"""
return math.floor((of_index - 1) / 2)

def swap(self, index1, index2):
"""swaps values in index1 and index2 within self.data"""
tmp = self.data[index1]
self.data[index1] = self.data[index2]
self.data[index2] = tmp

def insert(self, new_elt):
"""insert element into the heap"""
self.data.append(new_elt)
self.sift_up(self.size)
self.size += 1

def sift_up(self, from_index):
"""swap element in from_index up heap until it is in the right place"""
if from_index > 0:

parent = self.parent_index(from_index)
if self.data[from_index] > self.data[parent]:

self.swap(parent, from_index)
self.sift_up(parent)

def sift_up_while(self, from_index):
"""a while-loop based version of sift_up"""
if from_index > 0:

curr_index = from_index
parent = self.parent_index(curr_index)
while (curr_index > 0) and \

(self.data[curr_index] > self.data[parent]):
self.swap(parent, curr_index)
curr_index = parent
parent = self.parent_index(curr_index)
Note: this version repeats last two lines, unlike the recursive one

y Ifill
I
2

A K

Heaps Implementation with Arrays

