Priority queue (PQ): needs 3 operations

1. Insert a new item

2. Remove max-priority item

3. Get max-priority item (without removing) (peek)

How do we build one|from scratch?

Some data structure: arrays, lists, trees, hash maps/dictionary, hash sets/
set, graphs

How might you use these? Which ones might be best?

HashSets/set
=> Not really a way to specify priority

HashMap/dict

Q) Key = priority, Value = item > We could implement a heap using one of these options,
@ Key = item, Value = priority but we would need to search the whole map O(N)

Linked list keep a sorted list

Array list - get-max: O(1) (pick first element)
- remove-max: O(1) for linked list, for array list would need to shift elements
to keep sorted order => O(N)
=insert: O(N) to find position in sorted list

Trees
We know one way to do an ordered representation with trees...

=> BST (Binary search tree): for any node, every smaller node is on the
left, any larger node is on the right

What if we used this as a priority queue? Y B ALAPLED

Bcanec 2
¢ Ny
/\ \

4

9 o
£ 1
\/‘1/\7(J0DE Atwrt 7@

insert, get-max : JM__, Boffoﬂ’ Zlé’ﬂ
O(logN) if balanced
O(N) if unbalanced /’A@BL&‘/IM??& /P ﬁff

/S| UMBALANCED

What if we relax the rules a bit?

=> For a priority queue, we don’t need a total order like a BS
What if we just keep the max item at the top??

Heap (binary max heap): a binary tree (NOT a BST) with two constraints:

- max item is at the root

- left and right subtrees are also heaps gy X
.T’ '
DA 2,467 10 /2 1
. }/‘\ AEAP

~
a-\e

ﬁ/

—_—

/
NEAP

Note: can have different valid representations for the same heap

(may be more or less-balanced... more on this later)

LMY

Aclo A

\Y

N&/ﬁ 'K‘y
C

J

\

e

ON
K \.,\ J

Example: 'which of these are heaps?
DA7A (l/ z,§,7/gj

@ 0 © @
4N 2/7 4 ;/7

N
[S peapy”
W / 6)07«)4 ﬂEAfQ,/ ~ LguALa

T Svgreee Sk / / ” @
NAVE ST AS ppx REAP

(o~ BALADCED)

77 NOUCN]

Checking in-on-our priority queue goals:what can we infer about
the runtime of using a heap for a PQ?

Priority queue (PQ): needs 3 operations

1. Insert a new item => ?2??

2. Remove max-priority item => 2?27

3. Get max-priority item (without removing)
=> 0(1) => can just look at top of heap!

What about add and remove?

Ex, BEmovE 12

/
//\5/
/ 0\)
71
/
2

O
/7 \
0

/

NexT ‘(
CANDIDATES /

2.

Removing an element creates a “h
reorder subtree to fill it

/
q

ZesilT

//0\
;¥
T
7 q

ole”, can

To reorder, we only need to consider one “branch” of the

heap => If heap is balanced, this takes‘O(logN)

LT JF e womr o mseer [C

Strategy: add to bottom, reorder unti

1l we

RESVLT

10

/N /
q
/
Z.

have a heap again
T\
N
1

/ ¢

\
7 /
{

£
@4
{

Again, we only need to reorder one “branch” of the
heap => O(logN)

Sa 70 SVM/UAL/ZE..,

Priority queue (PQ): needs 3 operations

if heap is balanced:
1. Insert a new item => O(logN)
2. Remove max-priority item => O(logN)
3. Get max-priority item (without removing)
=> 0(1)

If heap is unbalanced, the insert/delete steps are harder:
- insert: O(N)
- remove max: O(N)
- get max: O(1)

Open questions (for next time):
- How to find an empty spot to insert?
- How to keep the heap balanced to ensure logN runtime?
- What does “balanced” even mean, anyway?

