Priority queue (PQ): needs 3 operations

1. Insert a new item

2. Remove max-priority item

3. Get max-priority item (without removing) (peek)

How do we build one|from scratch?

Some data structure: arrays, lists, trees, hash maps/dictionary, hash sets/
set, graphs

How might you use these? Which ones might be best?

HashSets/set
=> Not really a way to specify priority

HashMap/dict

Q) Key = priority, Value = item > We could implement a heap using one of these options,
@ Key = item, Value = priority but we would need to search the whole map O(N)

Linked list keep a sorted list

Array list - get-max: O(1) (pick first element)
- remove-max: O(1) for linked list, for array list would need to shift elements
to keep sorted order => O(N)
=insert: O(N) to find position in sorted list

Trees
We know one way to do an ordered representation with trees...

=> BST (Binary search tree): for any node, every smaller node is on the
left, any larger node is on the right

What if we used this as a priority queue? Y B ALAPLED
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What if we relax the rules a bit?

=> For a priority queue, we don’t need a total order like a BS
What if we just keep the max item at the top??

Heap (binary max heap): a binary tree (NOT a BST) with two constraints:

- max item is at the root

- left and right subtrees are also heaps gy X
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Note: can have different valid representations for the same heap

(may be more or less-balanced... more on this later)
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Example: 'which of these are heaps?
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Checking in-on-our priority queue goals:what can we infer about
the runtime of using a heap for a PQ?

Priority queue (PQ): needs 3 operations

1. Insert a new item => ?2??

2. Remove max-priority item => 2?27

3. Get max-priority item (without removing)
=> 0(1) => can just look at top of heap!



What about add and remove?
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Removing an element creates a “h
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To reorder, we only need to consider one “branch” of the

heap => If heap is balanced, this takes‘O(logN)
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have a heap again
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Again, we only need to reorder one “branch” of the
heap => O(logN)
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Priority queue (PQ): needs 3 operations

if heap is balanced:
1. Insert a new item => O(logN)
2. Remove max-priority item => O(logN)
3. Get max-priority item (without removing)
=> 0(1)

If heap is unbalanced, the insert/delete steps are harder:
- insert: O(N)
- remove max: O(N)
- get max: O(1)

Open questions (for next time):
- How to find an empty spot to insert?
- How to keep the heap balanced to ensure logN runtime?
- What does “balanced” even mean, anyway?




