

8

UNBALANCED

BALANCED

y8
I
4 to 8

ToI
Impt NODEALWAYS pAT BOTTOM RIGHT

PROBLEMATIC IFBST
IS UNBALANCED

How do we build one from scratch?

Some data structure: arrays, lists, trees, hash maps/dictionary, hash sets/
set, graphs

How might you use these? Which ones might be best?

Linked list
Array list

HashSets/set
=> Not really a way to specify priority

HashMap/dict

Trees

Priority queue (PQ): needs 3 operations
 1. Insert a new item
 2. Remove max-priority item
 3. Get max-priority item (without removing) (peek)

Key = priority, Value = item

Key = item, Value = priority

We could implement a heap using one of these options,
but we would need to search the whole map O(N)

keep a sorted list

 - get-max: O(1) (pick first element)

 - remove-max: O(1) for linked list, for array list would need to shift elements
to keep sorted order => O(N)

 - insert: O(N) to find position in sorted list

We know one way to do an ordered representation with trees…
=> BST (Binary search tree): for any node, every smaller node is on the
left, any larger node is on the right

What if we used this as a priority queue?

insert, get-max :

 O(logN) if balanced

 O(N) if unbalanced

DATA Z Y 8 9 10 12
HEAP I 1 HEAP

to 8

HEAP

MAY

ALSO A
HEAP

I
to

9
I
z 8

I
y

Note: can have different valid representations for the same heap
(may be more or less-balanced… more on this later)

What if we relax the rules a bit?

 => For a priority queue, we don’t need a total order like a BST.

What if we just keep the max item at the top??

Heap (binary max heap): a binary tree (NOT a BST) with two constraints:

 - max item is at the root

 - left and right subtrees are also heaps

DATA 112,517,93

9 9 9 9
III 2 7 575 7 I 1

s

f z
5

y
1

HEAP I HEAPV
NOTAHEAP

EQUIVALENT

THIS SUBTREESHOULD I TO

HAVE SAS MAX HEAP
NOT BALANCED
THOUGH

Example: which of these are heaps?

Checking in on our priority queue goals: what can we infer about
the runtime of using a heap for a PQ?

Priority queue (PQ): needs 3 operations
 1. Insert a new item => ???
 2. Remove max-priority item => ???
 3. Get max-priority item (without removing)
 => O(1) => can just look at top of heap!

EX REMOVE 12 of
Fdemkemovina 12

RESULT

1 s 7 1

4 pg Ég 49
8

I
I
2

WHAT IF WE WANT TO INSERT IT

RESULT

1 Ig o

z uk y E Y

What about add and remove?

Removing an element creates a “hole”, can
reorder subtree to fill it

To reorder, we only need to consider one “branch” of the
heap => If heap is balanced, this takes O(logN)

Strategy: add to bottom, reorder until we
have a heap again

Again, we only need to reorder one “branch” of the
heap => O(logN)

So to SUMMARIZE

Priority queue (PQ): needs 3 operations

if heap is balanced:
 1. Insert a new item => O(logN)
 2. Remove max-priority item => O(logN)
 3. Get max-priority item (without removing)
 => O(1)

If heap is unbalanced, the insert/delete steps are harder:
 - insert: O(N)
 - remove_max: O(N)
 - get_max: O(1)

Open questions (for next time):
 - How to find an empty spot to insert?
 - How to keep the heap balanced to ensure logN runtime?
 - What does “balanced” even mean, anyway?

