

A F
VisitED BCDE G F VISITED

A BGPFG E i

1 PUSH

Isi toupee I
É te

Bis App

ÉÉ
A

G

DFS DEPTH FIRSTSEARCH

BFS BREADTH FIRST
SEARCH

DFS: Removing most recent item to have been added to list

This is called “last in/first out” (LIFO) order

=> This is a stack

(which happens to be implemented with a linked list)

BFS: Removing the least recent
item to have been added to the list

This is called “first in/first out”
(FIFO) order

=> This is a queue

(Which also happens to be
implemented with a linked list)

BFS/DFS peudocode

HashSet<Vertex> visited = new HashSet<Vertex>();

LinkedList<Vertex> toCheck = new LinkedList<Vertex>();

while (!toCheck.isEmpty()) {

Vertex<T> checkingVertex = toCheck.removeLast(); // removeFirst() for BFS

if (dest.equals(checkingVertex)) {

return true;

}

for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

if (!visited.contains(neighbor)) {

visited.add(neighbor);

toCheck.addLast(neighbor);

}

}

}

1

A A
D ADD
E A D E

6 A7D E 06

EG FOR A F STORE A BTHIS

USE TO Look up
A
A D

F C F

ENDSTART

What other info would you need to return THE PATH from A->F?? (Example: A->C->F)

The code we've seen so far (below), implements canReach(), which just tells us if a path exists, not what it is.

return false;

How would we implement this???

Starting point: could store the path each
time we visit a node, but the paths could
get really long => would need a lot of
storage!

Instead: would like to track which node we "came from" when considering
each node
=> Need some data structure to store this info, then can read it "backwards" (from
end to start) to find the path

For more discussion on
this, see the lecture
recording

Will "fan out" from the
beginning of the maze
(tracking many routes at
once)

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

Prioritizes based on
distance to the end -- turns
out to be fastest for most
mazes

A note on how these mazes were labeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering
can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are
broken by considering the cell that was added to the PQ earlier (has a lower timestep number). Colors change every
20 steps.

Bigger maze comparison
Monday, October 24, 2022 1:02 PM

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source)—these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.

(Attribution: Pages 3-4 drawn by Milda from Fall 2022 version)

