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DFS: Removing most recent item to have been added to list

This is called “last in/first out” (LIFO) order

=> This is a stack

(which happens to be implemented with a linked list)
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BFS: Removing the least recent
item to have been added to the list
This is called “first in/first out”
(FIFO) order

=> This is a queue

(Which also happens to be
implemented with a linked list)
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What other info would you need to return THE PATH from A->F?? (Example: A->C->F)
The code we've seen so far (below), implements canReach(), which just tells us if a path exists, not what it is.

BFS/DFS peudocode

HashSet<Vertex> visited = new HashSet<Vertex>();

new LinkedList<Vertex>();

LinkedList<Vertex> toCheck

~—

while (!toCheck.isEmpty())
Vertex<T> checkingVertex = toCheck.removelLast(); // removeFirst() for BFS

if (dest.equals(checkingVertex)) {

return true;

}
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

if (!'visited.contains(neighbor)) {
visited.add(neighbor);
toCheck.addLast(neighbor);

}
return false; Q \ %:)

} C

How would we implement this??? §@

Starting point: could store the path each 74 '7‘
time we visit a node, but the paths could
D A2D

get really long => would need a lot of

storage!
E AYD?E
Z ASD>EDE
Instead: would like to track which node we "came from" when considering < ) 3@’
each node ) X
=> Need some data structure to store this info, then can read it "backwards" (from Q @
end to start) to find the path C
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Representing mazes as graphs

Sunday, October 23, 2022 4:54 PM

T 0-0-09@
T —O~0O

1T

Solving the maze = finding route (DFS or
BFS) from vertex that represents starting
cell to vertex that represents ending cell



Bigger maze comparison

Monday, October 24, 2022

1:02 PM

(Attribution: Pages 3-4 drawn by Milda from Fall 2022 version),
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"fan out" from the

beginning of the maze
(tracking many routes at

once)
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Prioritizes based on

distance to the end

-- turns

out to be fastest for most

mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering

can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source) —these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.






