H—®

\J (/IS)T.'EQ 74/ B} & P,é

'
x@/

QZ_.F/(" 70 Cugee

Q
PUH
APD

v

|

P
N}Zyﬁ)}'}-’

A= ?

10 ClECk

P/ -
77

27

/

DFS: Removing most recent item to have been added to list

This is called “last in/first out” (LIFO) order

=> This is a stack

(which happens to be implemented with a linked list)

-

§ZaN (DEPR) ~Fleer SEpecdd)

/

F

l//é/T EQ

A BODF G E ©)

7o NEck

|lard

/

2 e

6\J
\ 28
&
A2D

W}

Pumoye

BFS: Removing the least recent
item to have been added to the list
This is called “first in/first out”
(FIFO) order

=> This is a queue

(Which also happens to be
implemented with a linked list)

DES (feerory P16 g

SEACH

What other info would you need to return THE PATH from A->F?? (Example: A->C->F)
The code we've seen so far (below), implements canReach(), which just tells us if a path exists, not what it is.

BFS/DFS peudocode

HashSet<Vertex> visited = new HashSet<Vertex>();

new LinkedList<Vertex>();

LinkedList<Vertex> toCheck

~—

while (!toCheck.isEmpty())
Vertex<T> checkingVertex = toCheck.removelLast(); // removeFirst() for BFS

if (dest.equals(checkingVertex)) {

return true;

}
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

if (!'visited.contains(neighbor)) {
visited.add(neighbor);
toCheck.addLast(neighbor);

}
return false; Q \ %:)

} C

How would we implement this??? §@

Starting point: could store the path each 74 '7‘
time we visit a node, but the paths could
D A2D

get really long => would need a lot of

storage!
E AYD?E
Z ASD>EDE
Instead: would like to track which node we "came from" when considering <) 3@’
each node) X
=> Need some data structure to store this info, then can read it "backwards" (from Q @
end to start) to find the path C

6. Foe A-¢: 5% (A -1 e

s [AR =2 C

USE 1O Leok VP A —=D
AN—F C—=F s e
7’ R recording

SALT EnO

Representing mazes as graphs

Sunday, October 23, 2022 4:54 PM

T 0-0-09@
T —O~0O

1T

Solving the maze = finding route (DFS or
BFS) from vertex that represents starting
cell to vertex that represents ending cell

Bigger maze comparison

Monday, October 24, 2022

1:02 PM

(Attribution: Pages 3-4 drawn by Milda from Fall 2022 version),

B M

B g In

3 |$ QA fce

A ¢! IG,m
45 6 I O
245 99 23]%0 $7 98] ob 101 us)aa

19 36 1

Jon a1 fimfw

WA WS W T lMI\b_l‘lD

O 105 102 161

40 81 37 33 3495 16 93 96 97 4t

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

= XY

I
o B P

2 & 9] 9 iy 1, |

»5] B T S
ol

al WIiB)

0 14615215t 16d

IJ L 15 126 11l JI610 1S 120 s W 0F[ns IJ 5[0
| [M\Rsd A2 96 (00104 m[g 13) [CTRRLS | \[26 A B
J | el > \5) 64 A BN Y4 J A St o
[[7 3155 53 51 s v 7 0} o\ A osfi &s

I_ _lss | M 163 59 ST [0 50 52)e0 61 63 12 35 I— oz V14| J2425]27 51 St 55 sH

uumuﬂ»nﬁ&mmm| A GHLH 50)26 38 3 M6 48 |51 53 GAl 1a 115 1624k
1318 1225 2e)zo 2\ 3L Jui 39 uofie ws| wd 3\ 33|16 52 Biguo L e 36V 105 WA 23 TAR23 20 5V]\ 53 WO
G 21]ea 6fer Gofsyfur us 44 (5 1 [ve ?ﬂlg_slz W] \%5 g 1y 20 WOl v LA Y50 e\ P
sfeo fin frofes Gefsa fse e 2|z w oy fo [s@ folu
m s (L olesles sels 5o l4r ue 22 Vo 0 TH RN
o o £ 53 ‘\o il e () P) S 2o (31 13 150 5
) T |4 sz Mo

| T obfioeTin i ™ IS (6 R \R VIO iy

X \lo \25
04 \‘zl
\

Will

"fan out" from the

beginning of the maze
(tracking many routes at

once)

A«

(ghofy N

Prioritizes based on

distance to the end

-- turns

out to be fastest for most

mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering

can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source) —these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.

