
HashMaps Review

// create a hashmap with three slots in the underlying array
HashMap<String, Integer> offices = new HashMap<>(3);
offices.put(“Kathi”, 309);
offices.put(“Elijah”, 325);
offices.put(“Elijah”, 331);
offices.put(“Tim”, 318);

Assume that the hashCode function on a name is the length of the string (so “Kathi” → 5)

HashMap RunTime

Dictionaries programmer use Hashmap
languagedesigner Build Hashmap I likecalling

the sub lists

buckti

updated can't have duplicatebeys

Mtf fuoffices fh I.net titifWKathi which index
Let's try string length
Kathi 5
But 5 31 2

compressing notation

EEnvertthkey.fiaTnt
STEP 2 wrap around the array size
hashCode method of objects

new Course CSCI 200 hashcode

How can we recover 0 i runtime
Q what is the runtime of getto on a linked list
A constant the length doesn't matter
Q what is the runtime of get 100000
A Alio constant We have an upper bound and
the list length can only make it smaller

So if we can limit how big the buckets
can get we recover 0 i

Understanding HashCodes

Assume we want to use a hashmap to store this mapping from lab times to rooms (M4 is a

shorthand for “Monday 4-6”)

ASCII Codes

M4 CIT444

M8 CIT501

T1 CIT501

T4 CIT267

T7 CIT501

A 65 1 49

M 77 4 52

T 84 8 56

g
That does mean the Hashmap has to growdynamically like array lists Butyou willNOTneed to do resizing on homework3

we also need keys to be
evenly distributed between bucket
Length doesn't do this

ascii M asci 4

77 52 1290

array size

Java's hashCode on

strings is even better
than this

you'll use hashcode c on

Homework3 to use objects
as keys

 Handling Errors (Exceptions)
public class CourseData {
 LinkedList<String> allStudents;

 public CourseData() { this.allStudents = new LinkedList<>(); }

 // addStudent adds student to allStudents if they are not already there

 public void addStudent(String student) {
 if (this.allStudents.contains(student))
 throw new RuntimeException("Student " + student + " already in course");
 this.allStudents.add(student);
 }
}

—--

public class Registration {
 HashMap<String, CourseData> allCourses;

 // constructor sets up the hashmap with an empty
 // CourseData object for each course name
 public Registration(String[] coursenames) {
 this.allCourses = new HashMap<>();
 for (String name : Arrays.asList(coursenames)) {
 this.allCourses.put(name, new CourseData());
 }
 }

 // add student to given course
 public void enroll(String student, String coursename) {

 allCourses.get(coursename).addStudent(student);

 }

}

—--
public class Main {
 public static void main(String[] args) {
 String[] fall25Courses = {"CS111", "CS17", "CS15"};
 Registration fall25 = new Registration(fall25Courses);
 System.out.println(fall25);
 fall25.enroll("Priya", "CS111");
 System.out.println(fall25);
 }
}

throw new studentEnrolledException student

wte define this as

a new class that
extends Exception
see the notes

try
catch studentEnrolledException e

systemout_print n studentalreadyenrolled

Conceptual example from class

Brown ID s are 8 digits Thati
0 99,999,999 100 million

possibilities so we could guaranteeconstant time search for students byID if we create a 100 M element
array good10002

E II IT
aaaaaaa

student with ID 00010002
and nobody else

But there are nowhere near 100 M
students So nearly all of that array willbe wasted

But we don't know ahead of time
which ID s we will see and have
to store so the key space is
still enormous

HashMaps are the answer to how

can we store a realistic amount
OF ARBITRARY IDsinamuchsm
array.todo that we need handle collisions
somehow hence the buckets

To keep them under some small
Max size we must
use a good hash function that
distributes keys evenly over the

array indexes
Sometimes resize the array

