
Hashmaps and how they work

Motivation: Suppose a University wants to store many Student objects and look them up by their ID number
(eg. 1234567). Some options:

LINKEDLIST

no

ARRAY
INDEX

WITHARRAY
LOOKUP ISOCI

CONSTANT

Student
id: 000005

Student
id: 327111

Student
id: 999996

Student
id: 222112

327111

999996

Student
id: 222112

222112

000005

Student
id: 327111

Student
id: 999996

Student
id: 000005

With a Linked-list structure (whether implemented via a Mutable/
ImmutableList, Java LinkedList, etc.), we would need to search all of
the nodes until we find one matching the student ID we want

 => Lookup has O(N) runtime

Would look up student like
this:

Student s = arr[id]

Idea: With an array-based structure (whether implemented as a plain array, or Java ArrayList), we could
use the student's ID number as an index into a super-large array

 => Lookup time is constant, O(1)

However, there are some drawbacks....

 - Wasting lots of memory: many array spaces would go unused!

 - Key == array index => what if we needed to look up by some non-integer value (eg. the student's name?)

 - What happens when students leave the University? Probably can't reuse ID numbers, so array would
always grow in size!

How else could we leverage an array's constant-time access to look up objects?

Working with HashMaps

// Map lab times to room numbers
HashMap<String, String> labRooms = new HashMap<String, String>();

// Associate this key with this value
labRooms.put("Mon 4-6", "CIT219");
labRooms.put("Tue 6-8", "CIT501");

labRooms.get("Mon 4-6"); // Returns "CIT219"

// Changes the value mapped to this key
labRooms.put("Mon 4-6", "CIT444"); //
labRooms.get("Mon 4-6");

labRooms.get("Wed 8-10"); //

if(labRooms.containsKey("Mon 4-6")) {
// . . .

}

HashMaps, in practice

 - Map a “key” to a “value” (HashMap<K, V>)

 - Given key, hash map provides constant time (O(1)) access to lookup value

 - There can be at most one value per unique key

 - Key, Value can be any Java type

HashMap<String, List<String> // Could have one key map to multiple things
this way (still one object)

Speeding Up Access to Accounts

000005

104216

222112

327111

415831

999996

0

1

2

3

4

5

How to BUILD A HASAMP

AY
sector

l i2

3 3 Accts

4 9 Acct4

5 T Acct5

6 6

Aug

1029 1029 Act1029
1030 1070 Acct10301

1031
103,1

Acct

11

To start: what if we had some
mathematical function that could turn
account numbers (an integer) into an array
slot?

We can do this using modulo with the size
of the array—

Modulo (%): remainder when you do division
0000005 % 6 = 5
0000019 % 6 = 1
0000011 % 6 = 5

AcctNum % Array Size
=> returns number in range 0..(array size - 1)

=> However, with modulo it’s possible to have multiple
keys map to the same slot!!!

So how does it work?
 - Internally, HashMap is based on an
array
 - Keys are mapped to slots using %
 - Each slot contains a linked list of
entries that mapped to that slot

(For the remainder of these notes, we’ll focus on how a hash map
is implemented. As a programmer using hash maps, it’s not
necessary to understand these details—but we can learn a lot
about data structures by seeing how hash maps work!)

HDENTSygMiM

I
E

0000005 Y

FE I

iE.IE

Get(K)
 slot = k % (size of array)
 LinkedList l = array[slot];

 for(Account a : l) {
 if a.idNum == k
 return a
 }

What would it look like to implement get()?

(Partially)

Problem: what goes in the linked list?

We need to know if the item in the list matches the key k, so we need to store both the key
(which tells us what item it is) and the value (the thing we want to look up) in the hashmap!

Need to keep track of both key and value in linked list
=> LinkedList contains Key Value pairs (KVPair)
 eg. LinkedList<KVPair>[]

FIND SLOT

② SEMI ME KEY

-

Q: Why does the KVPair need to store the key?
Can't we figure out the student ID number from
the Student object?

This approach may work in this example. However,
the key and value could be any Java object, and they
might not relate to each other, so, when
implementing a generic hash table, we can't make
assumptions that the values will have this info.

To see this, consider the earlier example of mapping lab times
("Mon 4-6") to rooms (eg. "CIT 444"):

Suppose we call labRooms.get("Mon 4-6")

If we stored just values in the hashmap (ie, no KVPairs)....

With KVPairs, we have enough information

to tell which value maps to which key:

FA.EE EJ
THE

I

0 it 219 it 501

2WHICH is non 4 6
CAN'T TELL

THIS ONE

What about runtime?

 Lots of elements in one array slot
(long linked list => long search time),
 Many wasted array slots

Each element in its own array slot,
no wasted (empty) array slots

Ideally, want lists to be small so search is fast

Things that we can control to help this happen:
 - Initial array size (in practice, a prime number)
 - If/when you resize the map (75% full)
 - Hashing function (math)

Need: a way to turn an arbitrary object (String, Course,
Account, whatever) into an integer
 => integer, can do % => get to a slot

How to handle keys that aren’t integers?
Every object has a function called hashCode()

public int hashCode() {
}

Programmer perspective:

	 - Each key can only map to one value in the HashMap

 - For all operations (get, put, containsKey, …), Java calls hashCode() on the key

 to get an integer value (the “hash code”)—if keys have the same hash code,

 they will map to the same value

 - Java has already has a hashCode() for built-in types (Integer, String, …)

 If you are making your own class, you should write your own hashCode() method

 (just like equals())

MOST OPTIMISTIC CASE MOSTPESSIMISTIC CASE

DE

Example: what if we want to add some elements:

put(250, “A”);

put(255, “B”);

put(230, “C”); What happens inside the hash table?

(ie, hidden from the programmer)

Modulo (%) is the remainder
after doing division:

 150 % 10 => 0

 11 % 10 => 1

 52 % 10 => 2

9999 % 10 => 9

Since there are more possible hash values than array
slots, we “compress” the hash value to pick or a slot for
it in the array.

Usually we use modulo, ie: hash % size

Compression means that more than one key may
occupy to the same array slot, even when their
hashCodes are different values

Use hashCode() to get a unique hash value for this
key. hashCode() always returns an int.

(If the key is an Integer, hashCode() just returns the
integer itself—like you see here.)

(Additional notes page
from a previous semester)

Why does this work? Each array slot contains a list
or (key, value) pairs that were mapped to that slot.

To add an element to the hash map, put() (also called
insert()) adds the new element to this list.

For an example with get(), see the full typed notes

public interface IDictionary<K, V> {
public V lookup(K key) throws KeyNotFoundException;
public V update(K key, V value) throws KeyNotFoundException;
public void insert(K key, V value) throws KeyAlreadyExistsException;
public V delete(K key) throws KeyNotFoundException;

}

public class Chaining<K, V> implements IDictionary<K, V> {

private static class KVPair<K, V> {
public K key;
public V value;

}

public Chaining(int size) { . . . }

private KVPair<K, V> findKVPair(K key) throws KeyNotFoundException {
. . .

}

public V lookup(K key) throws KeyNotFoundException {
KVPair<K, V> pair = findKVPair(key);
return pair.value;

}

public V update(K key, V value) throws KeyNotFoundException {
KVPair<K, V> pair = findKVPair(key);
V oldValue = pair.value;
pair.value = value;
return oldValue;

}

public void insert(K key, V value) throws KeyAlreadyExistsException {
. . .

}

public V delete(K key) throws KeyNotFoundException { . . . }
public boolean equals(Object ht) { . . . }
public String toString() { . . . }

}

EXAMPLE FOR WORKING W HASAMAPS

KEY

VALUE

IMPLEMENTATION PERSPECTIVE

INSIDE A HASH TABLE INSERT ÉAMÉFROM FULL NOTES
Array I
4

SEE IEif2307230 10 0
3

y

25502551.10 5 1255 c
6

7

8

9

