
Lecture 12 – ArrayLists and Runtime

Summarize Worst-Case Runtimes (in terms of number of elements in the list)

LinkList MutableList (Link) ArrList

size

addFirst

addLast

get(index)
































































































LIKEHWZ

GINI LINEAR ON LINEAR OCI CONSTANT

SAY WE HAVE LIST
WITH STRINGS CAIB CD

FEOFFEE

t if
INDEX

IFFEE
 

(For a preview on exceptions, see the end 
of these notes)

MutableList (like HW2)

 - Same “chain” of nodes

 - MutableList class has “start” field that points to nodes

 - MutableList might have other fields like in HW2 (end, etc.)



For get() => same as LinkList => O(N)


So far we’ve seen three ways to look at lists…



LinkList (or ImmutableList)

 - Has a chain of nodes with (at least) a “next” field

 - Each node could be at any spot in memory

For get() => Need to follow “chain” of nodes (or Links) to get a specific item

     => Linear runtime over the size of the list => O(N)




ArrList (ArrayList in Java)

 - Relies on arrays:  at start, reserve a fixed number of consecutive 
memory slots

 - When array is full, resize by creating a new array and copying all the 
elements

 => If the double the size of the array on each resize

     Runtime to addLast to array becomes constant O(1)

       when looking over a large number of adds ("amortized constant")

     




Activity: Three Design Exercises

Design problem #1: A professor is trying to manage enrollments for several lab sections (numbered 01
through 14). For each lab, the professor needs to store the capacity of the room and the number of students in
the lab. Propose specific data structures to organize this information.

Design problem #2: A department is trying to manage enrollments in several courses (numbered 1000
through 1999). For each course, the department needs to store the capacity of the room and the number of
students in the course. Propose specific data structures to organize this information.

Design problem #3: A professor is trying to manage enrollments for multiple lab sections, each labeled with
the day of week and start time (such as Mon 8-10, Tues 4-6, etc). For each lab, the professor needs to store
the room where the lab is meeting.






























































































Pt

B FEET
thin

n

o

LinkedLists, ArrayLists, Arrays, ....

With an array-like structure, can access a specific lab 
with constant time lookup get(1)

  => Could use an Array of ArrayList for this (see next 
page for discussion of differences)



If use use a LinkedList, get(i) => O(N)

P2.  Same idea here, but if the course numbers

start at 1000 we have some issues:  

 - Do we leave 999 empty slots at the start of the array?  
This could waste memory

 

Could write a helper get(i) that subtracts 1000 from the 
course number...

 => But what if we wanted to look up courses by 
something other than the number (eg. a name, like P3)?   

    => Next lecture!





























































































2

ARRLIST

S
5

MON 6 8

Te 2H

Array vs. ArrayList?  

ArrayList (ArrList)

 - Class that contains an array, has methods to 
perform operations like a list (eg. addFirst, 
addLast, etc.)

 - Our version:  ArrList; Java's version:  ArrayList

 - When array becomes full, creates a new array 
and copies over all the elements

 - Contains EXACTLY ONE underlying array

    - All elements are always stored contiguously 
in memory

     - After copying, old array is unused (and Java 
cleans it up) 

A plain Array: 

  - Fixed slots in memory at contiguous addresses

 

Use like this:

String[] arr = new String[5];

arr[1] = "hi";



 - All you can do is access the different elements (in constant time) 

But what if we want to access array elements by a name, instead of a numeric index??? 
=> Next lecture!




































EXAMPLE

EXAMPLE
2

if

To continue from the ArrList example, let's consider a version that throws an exception when the 
array is full--this doesn't make sense for an ArrList, but let's pretend this is the behavior we want...  
How could we implement this?  

 

To "throw" an exception, we use the "throw" 
keyword (as we've been doing in prior 
assignments). 



A new twist:  when we throw a checked 
exception, we need to add an annotation to 
the method header to tell Java that this 
method throws an exception 

Preview on exceptions:  As we work with more code, we'll see more examples of Java's exceptions.  
Exceptions are ways for the program to deal with errors.  So far, all the exceptions we've seen have been 
for errors that just cause the program to quit.  



However, what if we want to handle errors more gracefully?  For example, if the user enters a bad input, 
perhaps we could display an error and prompt them again?   

To represent specific errors, can make a new 
class extending class Exception.  

This creates a "checked" exception, which is 
the default type in Java.  

(All the exceptions we've seen before this are called 
"unchecked" exceptions--more on this later.)


System.out.println("array was full!");

To "handle" an exception, we can use a try/catch 
block:  

 - Java runs the code in the "try"

 - If an exception (here, ArrayFullException) is 
thrown, the code in the catch block will run.  

 - Then, the program continues running after the 
catch block 

Example:  this program would print something like...

"array was full!"

"Array has:  [a, b]"   System.out.println("Array has:  " + arr); 

Note:  Java requires the programmer to catch checked 
exceptions:  if Java can't find code to catch the exception, it's an 
error!  Two options: 

 - Add a try/catch (like example 1)

 - Add a "throws" annotation to the method (which forces the 
method that called this one to deal with the exception instead)



=> Which option you pick depends on where in the program makes 
the best sense to handle the error (eg. where to prompt the user, or 
undo an operation) => we'll talk more about this from a design 
perspective soon! 

Error!  Must add try/catch, or 
throws annotation

























































So what's the deal with checked vs. unchecked exceptions?  



Checked exceptions:  Java enforces the programmer to catch the exception somewhere

    - This is the default type in Java (exception extends class "Exception")

    - In general, should be used for exceptions where the program shouldn't crash (ie, when 
there's some possibility to recover from the error, display an error message, or do 
something other than totally crashing the program





Unchecked exceptions:  work in the same way, except Java doesn't enforce the 
programmer to catch them.  

 - Declared just like checked exceptions, except they extend the class RuntimeException

 - Used for errors that shouldn't occur during normal operation (ie, if the program has no 
bugs), or errors where there's nothing to do except exit the program

 - All of the exceptions we've seen so far are unchecked exceptions, including:  
NullPointerException, IndexOutOfBoundsException, IllegalArgumentException, ...



We'll learn a lot more about exceptions and their differences in a few lectures, so no need to 
worry too much about this for now!  We just want you to know the terminology, and so you 
know there's a difference between the exceptions you're seeing now, and the exceptions 
you've been throwing in earlier assignments.


