Lecture 12 — ArrayLists and Runtime

Summarize Worst-Case Runtimes (in terms of number of elements in the list)

fLkE Rw2)
LinkList MutableList (Link) |ArrList
size
addFirst
addLast
get(index) G(w) twers | O] wumwean. | 000 Conwsrpwr

So far we’ve seen three ways to look at lists...

Cay e RAve ST

LinkList (or ImmutableList) ony Sremes (A1 ;"c‘;'pj
- Has a chain of nodes with (at least) a “next” field

- Each node could be at any spot in memory
For get() => Need to follow “chain” of nodes (or Links) to get a specific item

=> Linear runtime over the size of the list => O(N)

WAL JE
N
MutableList (like HW2) il

- Same “chain” of nodes
- MutableList class has “start” field that points to nodes
- MutableList might have other fields like in HW2 (end, etc.)

For get() => same as LinkList => O(N) [Myptie List

STAT

ArrList (ArrayList in Java)

- Relies on arrays: at start, reserve a fixed number of consecutive E\/'
memory slots | Y
- When array is full, resize by creating a new array and copying over all
elements \‘/ Aln/ e 9/0”)
0 A 1067
: B S1002
For get() => Since the array elements are always in contiguous z C @1001
memory slots, can look up the i'th element just based on the
starting address value. }.J_\ D @’0’5/

=> Just add to the starting address => constant time => O(1)

A2
CET(8) < Blow) + 2 + /
7

Sther Invpey

Q: Why is runtime for get(i) O(N) for a LinkList/MuitableList?
=> No guarantee where nodes are located in heap, so need to follow "next"
field in each node to find each element, until we get to the index we want:

e LT (3,5, 7 120 A Llier”

e) 1
— 3
&2 oy Siozy & f’?J; @ng/

What about addFirst?
On a linked list (eg. MutableList), add first has constant runtime => just need to make a new object
and update the "start" field:

Joppuer (")

M VIABLE {, 7
A A
A M \) /\/sﬂu——?p JEAT -\j NEYT

ST 7

pzs

Now what about an ArrList?

ﬁ A0 b { Moepwce ’) \FA

O | “mur’ vy O | "oranse @lo

T 10)3

| “éL/lVE'/ Cefy
Z N bélNE))0)1
]])mf

If you wanted to do this, you'd need to shift all the elements down somehow. The code really
isn't that important to us, but in order to maintain our property of everything being laid out
contiguously, you'd NEED to rearrange the objects.

So what's the runtime? It's linear!
If your array is really big, this gets expensive.

In practice, it turns out we handle this in the same way we handle adding to a full array, by
resizing. So let's talk about that now. But regardless of how the resizing actually happens, |
want you to understand that when the list is backed by an array, this copying thing needs to
happen.

Let's say we start with a (hon-full) ArrList and we want to add to the beginning. If

some elements are already filled-in, addFirst would be a bit complicated
addFirst on ArrList

public class ArrTest1 { b/ 5L0r§
ArrList flavors1 = new ArrList (4%

flavors.addLast("mint");
flavors.addLast("grape"); What SHOULD happen???

// flavors.addFirst("orange"); What does this mean for runtime????

} \/‘&EPDM; AFTEL—

ArrList @ [0 T ArrList @ |01
O | “mint’ (013 0 “Oﬂ,wét @i’
" Larepe 0 N e @
“ LS A Y UES
" @ 1olv g | @0l

Since there might not be slots at the beginning of the array, addFirst would need to shift all of
the existing elements down by one slot in order to make room! This would mean moving all

elements in the array => O(N) runtime!

Q: how would you move an element in the array?
Example: arr[2] = arr[l] // Item at arr[l] ("grape") is now at arr[2]

(In practice, you'd write this code in a loop to move all the elements, not just one.)

Q: would this make a new array? We could write the code this way, but this isn't required unless
the array is already full. In this example, we reuse the same list, just move the elements (so the
memory addresses are the same.

Runtime of AddLast/AddFirst with Resizing

public class ArrList {
String[] theArray; // the underlying array that stores the elements
int eltcount; // how many elements are in the array
int end; // the last USED slot in the array

private void resize(int newSize) {
// make the new array
String[] newArray = new String[newSize];
// copy items from the current theArray to newArray
for (int index = 0; index < theArray.length; index++) {
newArray[index] = this.theArray[index];
}
// change this.theArray to refer to the new, larger array
this.theArray = newArray;

| YRS CASE 2uwmined”
=/

public void addLast (String newlItem) {
if (this.isFull()) {

// add capacity to the array ///’—‘j;x

this.resize (this.theArray.length + 1); For now, we make a new array 1 larger than the

previous one each time we resize.

l // now that the array has room, add the item We could call this the “resize policy” (This isn’t a

this.addLast (newItem) ; very good one, we’ll learn a practical one soon.)

} else {

cf if (!'(this.isEmpty())) {

DvL} this.end = this.end + 1;
p)

this.eltcount = this.eltcount + 1; Note for next page: When array is not full, addLast
this.theArray[this.end] = newItem; just needs to add one element to the array and

increment two fields => constant runtime

e
public class ArrTest { ArrList 1245 @ 1116
: = ; ; 1221 theArray: @)/22
ArrList flavors rllew ArrList (3‘) @ na: 7 Yy - . Z//
flavors.addLast ("mint™) ena: £2£ 9 eltcount:

flavors.addLast ("grape")

@1222 , "mint™"'
new Course("csl1410"™, 200)

|

gzt

flavors.addLast("lemon")é-/g'E
A

@1223 D "grape"
flavors.addLast("cherry")<:?s
}® @1224 Course ("cs1410", 200)

z
e @225 [07/

- @1226 | (£ Mg‘

environment 1297 %
flavors - @1221 @ _ jD/L)
@1228 | w1

|
What'’s the worst case runtime of addLast? \' _M e
It’s a big more nuanced before, because it depends on if the array is full: -
If array is full => resize => linear time operation (copy) m D‘/
=71

If array is not full => constant time (add to a slot)

=> As developers, we want to thianten we “pay)y-?cost,, of resizing L—‘ C [Jé,btt /

\’74\\ ° e

How many resizes get done across N calls to addLast? How does this affect runtime?

ArrList flavors = new ArrlList(2);
wer

Resize by ‘]? Resize by 2 Resize by double

flavors.addLast("mint") Mugf/

flavors.addLast("grape") CON[J/

flavors.addLast("lemon") | LIV AL

flavors.addLast("cherry”) | / jyrdp

flavors.addLast("mango") L/neAro

flavors.addLast("orange") !

--

flavors.addLast("coffee") }

With resizing, the runtime for addLast kind of depends on whether array is full or not....

If array is NOT FULL: just need to add an element at index given by this.end (see
code on previous page) => runtime is constant

If the array is FULL => runtime is linear because we need to copy all elements

Good default resize policy: each time you need to resize the array,
double the size of the underlying array

If you do this => over time the runtime is effectively constant O(1)

=> We call this amortized runtime: in this case, the cost of copying N
elements is "paid out" over N adds, which makes the runtime effectively
constant when measuring over a large number of operations

For details, see the two pages at the end, and the typed notes.

SUPER QUICK intro to exceptions (more on this in a few lectures)

What if we wanted addLast to throw an error when the array was full? (This doesn't
make much sense in practice, but it's a good example of the concept.)

public void addLast(String newItem) {
if (this.isFull()) |

/.. Lol
}

if (this.isEmpty()) |
this.end = this.end + 1;
}
this.eltcount = this.eltcount + 1;
this.theArray[this.end] = newItem;

In the exceptions we've seen so far (eg. lllegalArgumentException), the program crashes
when an exception is thrown: this is fine in some cases when the program can't possibly
continue. But what if we want to handle the error more gracefully?

What if we want our program to detect when an error occurs, and then do something different
to recover from the situation, and keep running?

Here's how: First, it's common to create new classes for different types of exceptions in Java
that are specific to the error we want to recover from. All exceptions extend the class
Exception (or some other subclass of Exception).

// This is an exception class, gives the error a name
public class ArrayFullException extends Exception {}

Then we throw that exception....

public void addLast(String newItem) throws ArrayFullException {
if (this.isFull())
throw new ArrayFullException(); // Kinda like return, but different
}

We can detect and recover from the error with a try/catch block, like this:

ArrList arr = new ArrList(2);

arr.addLast("a");

arr.addLast("b");

// try/catch: do the code in the try

// if it throws this type of exception, run this cod

// (e is a name with error about the exception) Can pUt any amount of code here! If

try { _— an ArrayFullException is thrown, the
arr.addLast("c") :j(catch block will be run, and then the

} catch (ArrayFullBxception e) { program can continue running.
// Do something different (ie, don't crash)

// Prompt the user, remove element

// arr.removelLast(...) . . .
} We'll see more with exceptions in a few

lectures, but it will help to know about
try/catch now!

How many resizes get done across N calls to addLast? How does this affect runtime?

ArrList flavors = new ArrList(2);

Resize by 1 Resize by 2 Resize by double
- —

flavors.addLast ("mint") CO/VST CW"J‘?’ c@\,s-,/ {
flavors.addLast ("grape") ComsT @NH/ _Cw,\)g']/]
flavors.addLast ("lemon") MlZ& , M/ZB/ () _P\tg)zf 7_ C@l”?/ ‘oiﬂ.j

flavors.addLast ("cherry") | P)28 - | Comfr COPSY |
flavors.addlast ("mango") | pugse Retize oNsy |
flavors.addlast ("orange”) | PEC)2E ConsT CON” |
flavors.addLast ("coffee") | PEL)ZE Zettze epnsT |

) L
Each resize is linear time due tww Resize 1 ey oS
ConsT]
. é aonE |11 1)
(/e # OF g T \
70O, fy, [REsie ¢ eory OPS
QALLS 70, { v
For N calls, resize N/2 times => halve%ntime cost => still ¢ /
linear runtime O(N) *

What happens in practice (as a general rule)
=> When you resize, double the size of the array

Instead of looking at the worst case for one call (linear), we can
look at the cost over all the allocations we’ll do to build the
whole list... the cost is distributed across all the elements.

The total cost for N calls to addLast is a amortized constant

We can distribute the cost across the elements so each one is
charged a constant amount for the copying work.

Abp 2 0P LaN Zrga Toe A2RAY on Retjzr
o| Mwr o | MINT
[| GRAFE \\| crapE
\[/ A 2?5 ,%)T{Zm w) \d Aop [,ur(ctmou)
o | MinT e, Cous 40 pesne)
V| GBAZE | i s [@ MNT Eﬁ“pzdfz
7| e \ | Grarc next resize: 2
3| cNew/ 1| LEMon
3 [CErey
\[/ /4"3 (/45‘7' (/‘z)duéa)
ol MinT ; ér\:v/vzssz 6
w75 panlssrlhunto)
7| Lempn o WMNT |icomed 4
2| cNew) \| &r | e s
v | ZMAé6D 9| LEMon
S| vrAes 3 | ClEReF
q | maeo
4 Aow (Aff (Cogze) s| oLwee
e[MwT ipewsss Resz)| . 4| eorpe
/ 6&72 next resize: 2 7 __Cf’ pCOC A7E
7| e e
3| cNewnf
7 | /Med Sze 1 0 15 324y
s YrAves [reseamy & {05 B2
¢ | Correr vor Feroe gesize & 0 (32
7 | ctococare

By doubling the array each time we resize, we pay effectively pay a
fixed portion of the cost equal to the number of items we add. Thus,

FOR_TH_ yERShor) ! o . -
if we divide up the total cost of copying over all elements in the
S'/Z{_—j ? ,é f’ /G array, the cost to add is constant!
[roscom | & B ¢
A Z
$12& Z
/A Numbelf ?coples still grows linearly ag'array size grows

=> linear runtime! => O(N)

