
Lecture 12 – ArrayLists and Runtime

Summarize Worst-Case Runtimes (in terms of number of elements in the list)

LinkList MutableList (Link) ArrList

size

addFirst

addLast

get(index)

LIKEHWZ

GINI LINEAR ON LINEAR OCD CONSTANT

SAY WE HAVE LIST
WITH STRINGS A B D

F I

HEISE

GET 2 84001 2 1
START INDEY

So far we’ve seen three ways to look at lists…

LinkList (or ImmutableList)

 - Has a chain of nodes with (at least) a “next” field

 - Each node could be at any spot in memory

For get() => Need to follow “chain” of nodes (or Links) to get a specific item

 => Linear runtime over the size of the list => O(N)

MutableList (like HW2)

 - Same “chain” of nodes

 - MutableList class has “start” field that points to nodes

 - MutableList might have other fields like in HW2 (end, etc.)

For get() => same as LinkList => O(N)

ArrList (ArrayList in Java)

 - Relies on arrays: at start, reserve a fixed number of consecutive
memory slots

 - When array is full, resize by creating a new array and copying over all
elements

For get() => Since the array elements are always in contiguous
memory slots, can look up the i’th element just based on the
starting address value.

 => Just add to the starting address => constant time => O(1)

EXAMPLE LIST 3,5 7 12 AS LINKLIST

DAILY1004
lazy 85239 05991

GETLE

Q: Why is runtime for get(i) O(N) for a LinkList/MuitableList?

 => No guarantee where nodes are located in heap, so need to follow "next"
field in each node to find each element, until we get to the index we want:

ADDFIRST E

MUTABLELIST

START PHTI

NFTDNETDNHTONVLMADPFIR.SI

ORANGE

mint
i p

an
1 GRAPE 1013

2 GRAPE 1014
1015

3 3 1015

If you wanted to do this, you'd need to shift all the elements down somehow. The code really
isn't that important to us, but in order to maintain our property of everything being laid out
contiguously, you'd NEED to rearrange the objects.

So what's the runtime? It's linear!

If your array is really big, this gets expensive.

In practice, it turns out we handle this in the same way we handle adding to a full array, by
resizing. So let's talk about that now. But regardless of how the resizing actually happens, I
want you to understand that when the list is backed by an array, this copying thing needs to
happen.

What about addFirst?
On a linked list (eg. MutableList), add first has constant runtime => just need to make a new object

 and update the "start" field:

Now what about an ArrList?

addFirst on ArrList

public class ArrTest1 {
ArrList flavors1 = new ArrList(4);
flavors.addLast("mint");
flavors.addLast("grape");

// flavors.addFirst("orange");
}

ArrList

“mint”

“grape”

ArrList

4 SLOTS

BEFORE AFTER
1012 1012

81013 0 ORANGE 81013
01014 I'M 01014

2 1015 1015

3 1016 01016

What SHOULD happen???

What does this mean for runtime????

Let's say we start with a (non-full) ArrList and we want to add to the beginning. If
some elements are already filled-in, addFirst would be a bit complicated

Since there might not be slots at the beginning of the array, addFirst would need to shift all of
the existing elements down by one slot in order to make room! This would mean moving all
elements in the array => O(N) runtime!

Q: how would you move an element in the array?

	 Example: arr[2] = arr[1] // Item at arr[1] ("grape") is now at arr[2]

(In practice, you'd write this code in a loop to move all the elements, not just one.)

Q: would this make a new array? We could write the code this way, but this isn't required unless
the array is already full. In this example, we reuse the same list, just move the elements (so the
memory addresses are the same.

Runtime of AddLast/AddFirst with Resizing

public class ArrList {
String[] theArray; // the underlying array that stores the elements
int eltcount; // how many elements are in the array
int end; // the last USED slot in the array

private void resize(int newSize) {
// make the new array
String[] newArray = new String[newSize];
// copy items from the current theArray to newArray
for (int index = 0; index < theArray.length; index++) {

newArray[index] = this.theArray[index];
}
// change this.theArray to refer to the new, larger array
this.theArray = newArray;

}

public void addLast(String newItem) {
if (this.isFull()) {

// add capacity to the array
this.resize(this.theArray.length + 1);
// now that the array has room, add the item
this.addLast(newItem);

} else {
if (!(this.isEmpty())) {

this.end = this.end + 1;
}
this.eltcount = this.eltcount + 1;
this.theArray[this.end] = newItem;

}
}

public class ArrTest {
ArrList flavors = new ArrList(2);
flavors.addLast("mint")
flavors.addLast("grape")
new Course("cs1410", 200)
flavors.addLast("lemon")
flavors.addLast("cherry")

}

—-----------------------------------
-

environment
flavors → @1221

@1221
ArrList
theArray: @1222
end: 1 eltcount: 2

@1222 "mint"

@1223 "grape"

@1224 Course("cs1410", 200)

@1225

@1226

@1227

@1228

WORST CASE RUNTIME

I

ADD

ffLIE

T.EE
i 1

What’s the worst case runtime of addLast?
It’s a big more nuanced before, because it depends on if the array is full:

 If array is full => resize => linear time operation (copy)

 If array is not full => constant time (add to a slot)

=> As developers, we want to think about how often we “pay the cost” of resizing

For now, we make a new array 1 larger than the
previous one each time we resize.

We could call this the “resize policy” (This isn’t a
very good one, we’ll learn a practical one soon.)

Note for next page: When array is not full, addLast
just needs to add one element to the array and
increment two fields => constant runtime

How many resizes get done across N calls to addLast? How does this affect runtime?

ArrList flavors = new ArrList(2);

Resize by 1 Resize by 2 Resize by double

flavors.addLast("mint")

flavors.addLast("grape")

flavors.addLast("lemon")

flavors.addLast("cherry")

flavors.addLast("mango")

flavors.addLast("orange")

flavors.addLast("coffee")

IT1

WE

CONST

CONST

1 LINEAR

LINEAR
LINEAR

I

With resizing, the runtime for addLast kind of depends on whether array is full or not....

If array is NOT FULL: just need to add an element at index given by this.end (see
code on previous page) => runtime is constant

If the array is FULL => runtime is linear because we need to copy all elements

Good default resize policy: each time you need to resize the array,
double the size of the underlying array

 If you do this => over time the runtime is effectively constant O(1)

 => We call this amortized runtime: in this case, the cost of copying N
elements is "paid out" over N adds, which makes the runtime effectively
constant when measuring over a large number of operations

For details, see the two pages at the end, and the typed notes.

CONST CONST CONST 1

CONST CONST CONST

RESIZE RESIZE 4RESIZE 2 COPYOPS

RESIZE CONST CONST I

RESIZE RESIZE CONST I

RESIZE CONST CONST

RESIZE RESIZE CONST I
4Copyops

1 1 m

yfzfffyyynmufg.ge
CALLS TOTAL

SUPER QUICK intro to exceptions (more on this in a few lectures)

What if we wanted addLast to throw an error when the array was full? (This doesn't
make much sense in practice, but it's a good example of the concept.)

In the exceptions we've seen so far (eg. IllegalArgumentException), the program crashes
when an exception is thrown: this is fine in some cases when the program can't possibly
continue. But what if we want to handle the error more gracefully?
What if we want our program to detect when an error occurs, and then do something different
to recover from the situation, and keep running?

Here's how: First, it's common to create new classes for different types of exceptions in Java
that are specific to the error we want to recover from. All exceptions extend the class
Exception (or some other subclass of Exception).

Then we throw that exception....

We can detect and recover from the error with a try/catch block, like this:

Can put any amount of code here! If
an ArrayFullException is thrown, the
catch block will be run, and then the
program can continue running.

We'll see more with exceptions in a few
lectures, but it will help to know about
try/catch now!

How many resizes get done across N calls to addLast? How does this affect runtime?

ArrList flavors = new ArrList(2);

Resize by 1 Resize by 2 Resize by double

flavors.addLast("mint")

flavors.addLast("grape")

flavors.addLast("lemon")

flavors.addLast("cherry")

flavors.addLast("mango")

flavors.addLast("orange")

flavors.addLast("coffee")

ADD 2 ON EACH RESIZE I
HRESKEMINT

1 GRAPE

m.fi sYeTkemon if ftp.t.ttYE
1 GRAPE MINT
2 LEMON
3 CHERRY ÉÉÉÉÉ

ARE.EE MAN6O
MINT

1 GRAPE
2 lemon

mink it d
3 CHERRY GRAPE

Y MANGO
5 ORANGE LEFTY

4 MANGO

µ
ADDLAST COFFEE 5 ORANGE

RESIZE 6 COFFEE
1 GRAPE 7 CHOCOLATE
2 LEMON
3 CHERRY
MANGO SIZE Y 8 163269

5 ORANGE ITEMSCOPIED 2 4 8 16 32
6 COFFEE ADDS BEFORERESIZE 2 4 816 32
7 CHOCOLATE

FORTHIS VERSION
SIZE 4 6 810

mi t.EE 3

Each resize is linear time due to the copy

What happens in practice (as a general rule)

 => When you resize, double the size of the array

For N calls, resize N/2 times => halved runtime cost => still
linear runtime O(N)

Instead of looking at the worst case for one call (linear), we can
look at the cost over all the allocations we’ll do to build the
whole list… the cost is distributed across all the elements.

The total cost for N calls to addLast is a amortized constant

We can distribute the cost across the elements so each one is
charged a constant amount for the copying work.

ERROR

New size: 8

Items copied: 4

addLast’s before

 next resize: 4

New size: 4

Items copied: 2

addLast’s before

 next resize: 2

New size: 4

Items copied: 2

addLast’s before

 next resize: 2

New size: 6

Items copied: 4

addLast’s before

 next resize: 2

New size: 8

Items copied: 6

addLast’s before

 next resize: 2

By doubling the array each time we resize, we pay effectively pay a
fixed portion of the cost equal to the number of items we add. Thus,
if we divide up the total cost of copying over all elements in the
array, the cost to add is constant!

Number of copies still grows linearly as array size grows
=> linear runtime! => O(N)

