
Review: Continuing from last lecture–memory layouts of lists

Consider the following layouts for the list [8, 3, 6, 4] – what program might generate this heap layout?

@1012 MutableList(start:@1017)

@1013 Node(item:6, next:@1016)

@1014 Node(item:3, next:@1013)

@1015 Course(name: “CSCI1410”, enrollment: 200)

@1016 Node(item:4, next:null)

@1017 Node(item:8, next:@1014)

@1018

Question: How would this memory layout be different if we were making an immutable list with the same
sequence of addLast/addFirst calls?

Question: Imagine this list were named L in the environment. What sequence of memory objects get visited to
compute L.get(2) [which should return 6]?

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get(2)?

@1012 ConsecList

@1013 8

@1014 3

@1015 6

@1016 4

@1017

@1018

WHATSEQUENCE OF
ADDFIRSTADDLASTCALLS

es y.tn

4
ADDFIRST 6 on ADDLA'T6

ADDFIRST3 36

ADDlastly 3,614

Ʃ ADDFIRST 8 8,36,4
ORDERY EE.ES QfEnERckEsTED

INDEF 6,43 MAR 8 58

ON

436,4

I
so
ELEMENTZ

I 1 1 061

Can follow references to see order of
elements in list

Can’t just see which element is element 2 by looking at the heap => need to follow the chain of
references (many colors or arrows above) to find out!

 => This means we need to search the whole list, which has linear runtime!

Where is element 2 in this list?

Just from the picture we can see it’s at @1015

Because this implementation has the array elements in consecutive slots,
we can figure out element 2’s address just by taking the address where the
list starts and adding to it:

Therefore, we can implement get(i) by looking up the element at (address of list) + i + 1

 => This just involves adding a constant value to an address => constant runtime!!

Lecture 11: Arrays and ArrayLists

(from last time) Consider the following layouts for the list [8, 3, 6, 4] – what program might generate this heap
layout?

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get(2)?

@1012 ConsecList

@1013 8

@1014 3

@1015 6

@1016 4

@1017

@1018

BASEDONPICTURE

ELEMENT 2 IS AT
O

2 TSARTOF LIST
CONSTITTE 7021

SIMPLE

iii
THIS IS CALLED

1504 4

AN INDEX INTO THE
ARRAY

USED TO GET SET A SPECIFICSLOT
RELIES ON ADDRESSES

This kind of data structure is called an array, which is common to many programming
languages. Arrays form the basis of Java's ArrayList (among other types).

// Make an array with space for 5 strings

String[] words = new String[5];

HOW WOULD WE MAKE

man

iIi

ADDFIRST ADDLAST

WOULD HAPPEN TO

y
Al

I

With an array, Java makes all the
slots for us ahead of time,

We decide how to use them

Don’t need to make nodes to hold
objects every time we add
something

Adding to a full ArrList

@1012

ArrList
theArray: @1013
end: 0
eltcount: 2

@1013 “hello”

@1014 “there”

@1015 “brown”

Assume this ArrList is named AL.

Now run AL.addLast(“bear”)

private void resize(int newSize) {
// make the new array
String[] newArray = new String[newSize];
// copy items from the current theArray to newArray
for (int index = 0; index < theArray.length; index++) {

newArray[index] = this.theArray[index];
}
// change this.theArray to refer to the new, larger array
this.theArray = newArray;

}

public void addLast(String newItem) {
if (this.isFull()) {

// add capacity to the array
this.resize(this.theArray.length + 1);
// now that the array has room, add the item
this.addLast(newItem);

} else {
if (!(this.isEmpty())) {

this.end = this.end + 1;
}
this.eltcount = this.eltcount + 1;
this.theArray[end] = newItem;

}
}

AL ADDLAST HELLO

1 ALADDLAS THERE

01016 Course
ALPODCAST BROWN

Guns

A ADDLAST BEAR

WHAT HAPPENS

iiiiiiiiiiiii.it

I

1
FULL RESIZE

ADDLAST
FROM BEFORE

ArrList AL = new ArrList(3)
When we created ArrList, have fixed
number of slots

If we want more space, we need to “resize”
by getting a new array of larger size, copy
everything over, then add new item

(You don’t need to understand all the code here, we just want you to see the
shape of it.)

