WAHAT S€quaxe pgr
Review: Continuing from last lecture—-memory layouts of lists / ADD;))L;T ADp [AQ/‘ CALU

Consider the following layouts for the list [g §J , 4] — what program might generate this heap layout?

- g

> — Can foIIovy re_ferences to see order of
@1012 | MutableList(start:@1017) elements in list b
| @1013 | Node(item:6, next:@1016) j Aoobsr (¢) o poplarr ()
@1014 | Node(item:3, next:@1013) e Alp F;,z;r(Z) [3/ é,]

@1015 Course(name: “CSCI11410”, enroliment: 200)

@1016 | Node(item:4, next:null) N A0p LAS?’("() [)/LI “{1
1017 | Node(item:8, next:@1014 i A9
21(_)_1_8_ ode(item:8, next@) D/fmgr(g/) [g},ﬁ/qj

WhAIcH egJeas Wene (peAren. , L
Question: How would this memofy layout be different if we were making an immutable list with the same
sequence of addLast/addFirst calls?

Question: Imagine this list were named L in the environment. What sequence of memory objects get visited to

compute L.get (2) [which should return 6]?
e
%361 e Vs

Can’t just see which element is element 2 by looking at the heap => need to follow the chain of

references (many colors or arrows above) to find out! ':) O (N)
=> This means we need to search the whole list, which has linear runtime!

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get (2) ?

CH34, 13

ﬁ @1012 ConseclList
Where isielement 2 in this list?

@1013 8 Just from the picture we can see it’s at @1015

3 Because this implementation has the array elements in consecutive slots,
we can figure out element 2’s address just by taking the address where the
?| @1015 6 list starts and adding to it:
4

@Blois = Glojz +2 #|

@1018 ADpLESS oF Sty ofF
ELEHer 2 =S

Therefore, we can implement get(i) by looking up the element at (address of I|st) +i+ 1

! =>0(/(
=> This just involves adding a constant value to an address => constant runtlme"

Lecture 11: Arrays and ArrayLists

(from last time) Consider the following layouts for the list [8, 3, 6, 4] — what program might generate this heap
layout?

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get (2) ?

~a ﬁMl:D ON Pler U‘C/

-5,@1012 ConsecList pLMseT 2\ (/(7’ l , /

o |@w013 |8 / & /

) @1014 3 _@i{_ 1012 + Z +)

% e e T Cer
@1016 |4 LLEMENT 7 START OF (157~
@1017 CoMNCTALT ?0(/)
@1018 ML

This kind of data structure is called an array, which is common to many programming

languages. Arrays form the basis of Java's ArrayList (among other types).

// Make an array with space for 5 strings
String[] words = new String[5];

(oork-DS [Qj = /ﬂfggr
[,C)mZ.D.([Z,j: HOIU 4

N W N < o

T L cALLED
i o TRE AREAY
= UStp fo &4T, /SET A g JStor;

Reliec oV Mopeesec

slots for us ahead of time,

With an array, Java makes all the x}
We decide how to use them

Don’t need to make nodes to hold I up- 2 by
objects every time we add Y / : / 21
something w—{v——/ -
- A _’—/__/
Nﬂ\A.) QJOULD eIk MA : 1)\ 1<
"
_ 7 \1 4
Aopffesr | oo LisT SO IETTEEE S
Y| I/
=2 Coripep. LT R ~
Lo20LD JJoppPi) 7O ‘“L—_\—’J

op 70 THE S00cE AT
A ADDLAIT] Y 9

/_/

C

HH]I/ |

)
Z
3
{
3

Adding to a full ArrList

ArrList AL = new ArrList(3)

ArrList
@1012 tehnedA:\r(r)ay. @1013
eltcount: 2
Ol @1013 “hello”
\ @1014 “there”
)_@1015 “brown”
R/ olk Covagy

When we created ArrList, have fixed
number of slots

Assume this ArrList is named AL.

Now run AL.addLast(“bear”)

AL Apolaer ("NLLE]
AL ‘/ADD LA pene 7))

AL poo Last("Braoww)
A LAt ™)

pew <:909qat

If we want more space, we need to “resize”

by getting a new array of larger size, copy W)(j’ 7\//4}9.79&%27

everything over, then add new item

& 379 i 7T AYT —
e 27y ANKL\LOI—;&O
@’;7/ 47‘/-\'5,&’) !

private void resize(int newSize) {
// make the new array I
String[] newArray = new String[newSizel; &1377 I "KMI/N J 2
// copy items from the current theArray to ngwAr k4 767 / y,:/(z Y | 3
for (int index = 0; index < theArray.lengthf ImdexFrr—{—] 1
newArray[index] = this.theArray[index]; 7

}

// change this.theArray to refer to the new, larger array

this.theArray = newA
}

public void addLast(Str
if (this.isFull()) {

rray;

ing newItem) {

// add capactty to the array

this.resize(this.theArray.length + 1);

a Foy Llize
K

// now that the array has room, add the item
this.addLast(newItem);

} else {

if (1 (this.isEmpty())) {

this.end = t
}

this.eltcount = this.eltcount + 1;

his.end + 1;

this.theArray[end] = newItem;

}

L—A0LNT
204 BEFOAE

} (You don’t need to understand all the code here, we just want you to see the

shape of it.)

