CS18 Integrated Introduction to Computer Science Fisler

Lecture 11: Dynamic Arrays (ArrayLists)
11:00 AM, Feb 16, 2021

Contents

(1 Recap of Where we Are| 1

[2 Resizing Arrays| 1
2.1 Running Time of addLast —Part 1] 3

Motivating Question

What happens when an array runs out of space? How do we accommodate new elements efficiently
in terms of both time and space?

Objectives

By the end of this lecture, you will know:

e What to do when an array needs more slots than it has

1 Recap of Where we Are

Last class, we started learning about two related data structures. Here’s the slide summarizing
where we are:

| Arrays: a core/built-in data structure in every programming language
* (called vectors in some languages)
* key feature: a fixed-length sequence of consecutive memory locations
* which enables: constant-time access and storing of values at a specific location

ArrayLists: An implementation of lists that uses arrays under the hood

* Not available in all programming languages

Last class, we learned about built-in arrays. Today, we turn to ArrayLists

2 Resizing Arrays

Imagine that we wanted to use an array to manage a list of the names of CS18 staff. At first, we
planned only to make a list of the HTAs, so we create an array of size 4. But in the process of
adding TAs to the array, we also get nostalgic and create a DI11o.

CS18 Lecture 11: Dynamic Arrays (ArrayLists)11:00 AM, Feb 16, 2021

ArrayBasedList ourTAs = new ArrayBasedList (4);
ourTAs.addLast ("Carrie");

ourTAs.addLast ("Evan") ;

Dillo iMissDillos = new Dillo (6, true);
ourTAs.addLast ("Nastassia") ;

ourTAs.addLast ("Put") ;

As a reminder, our addLast method appears as follows:

// add given item to the end of the array
ArrayBasedList addLast (String newelt) {
contents[end] = newelt;
end = end + 1;
return this;

Running the code results in the following memory contents:

Environment Heap

ourTAs 2> @1022 “%@1022 } ArrayList

iMissDillos > @1030 @1023 maxsize = 4
@1024 | contents = @1026=
@1025 end =4
@1026 “Carrie”
@1027 “Evan”
@1028 “Nastassia”
@1029 ”Put”

10301 Dillo

@1031 len=6
@1032 isDead = true
@1033
@1034
@1035
@1036
@1037

Now we want to start adding one of the UTAs:

ourTAs.addLast ('"'Joe'");

As written, our addLast method will insert ''Joe'' into the address computed as ourTAs.
contents + ourTAs.end, which is location @1030. But that address is the start of the Dillo
object. We don’t want to destroy the Dillo when adding ''Joe'', and indeed if we tried this
sequence with regular arrays we would get an exception that we tried to access the array “out of
bounds”.

Upshot: the array no longer has space to add more TAs. But we are trying to build a list
implementation on top of arrays. To a programmer, one can always add items to a list. So if we
want to use arrays to implement lists, we have to be able to adapt to this situation.

Can we somehow put ''Joe'' in the next available location (€1033) and tell the existing array
to look there? No, that would violate the fundamental property of arrays that all elements are in
consecutive order. Without that property, we can’t compute the location where a specific index into
the list lies (which is what makes the get method constant time).

CS18 Lecture 11: Dynamic Arrays (ArrayLists)11:00 AM, Feb 16, 2021

Our only option here is to make a new, longer, array with enough space for our additional TA. We’ll
create the longer array, copy the old array contents to the new one, then insert the new element in
the additional space. This means the addLast method will look like the following:

ArrayBasedList addLast (String newelt) {
if (eltCount == maxSize) { // we're out of space

// make new larger array
int newMaxSize = maxSize + 1;
String[] newContents = new String[newMaxSize];

// copy old elements over to new array

for (int index = 0; index < maxSize; index = index + 1) {
newContents[index] = contents[index];

// adjust maxSize and contents to match new array

maxSize = newMaxSize;
contents = newContents;

}

contents[this.end] = newelt;

end = end + 1;
eltCount = eltCount + 1;
return this;

With this version of addLast, Java stops throwing the “index out of bounds” error. The resulting
memory contents appear as follows:

Environment Heap

@1022 ArrayList

ourTAs > @1022

1023 maxsize =5

iMissDillos > @1030 @1024 \| contents = @1033 <
@1025 end=5
@1026 “Carrie”
@1027 “Evan”
@1028 “Nastassia”
@1029 “put”
@1030 Dl
@1031 len=6
@1032 isDead = true
@1033 4~ “Carrie”
@1034 “Evan”
@1035 “Nastassia”
@1036 “Put”
@1037 “Joe”

Note: This can be a really nice piece of code on which to practice working with the debugger: step
through addLast and watch how the arrays copy and various fields update.

What happens to the old array? Several of you asked whether the old array (at @1026 just
sits there being unused. It won’t get used again — there’s no way to get to it from the environment.
But Java will eventually detect that we're no longer using it and return that memory for use by
another part of the program. That process is called garbage collection. We’ll discuss that in more
detail towards the end of the course.

CS18 Lecture 11: Dynamic Arrays (ArrayLists)11:00 AM, Feb 16, 2021

2.1 Running Time of addrast — Part 1

Our original addLast code was constant time: since Java can get to a location in an array in
constant time, inserting an element takes constant time. What about this new version that handles
resizing?

Once the array has filled up, notice that each subsequent call to addLast is linear time (because we
have to copy the old array over to the new one). That’s unfortunate. How could we avoid that?

One proposal is to just predict how much data you will eventually have, and set aside a large enough
array up front. Sometimes that works. But sometimes it doesn’t: we don’t always know how much
data we will have. And besides, that can lead to poor space usage. If I create an array with 1000
spaces (for example) but only ever use 4 of them, then we’'ve wasted 996 memory slots (not much in
practice in this specific case, but there’s a general principle here).

A more practical proposal is to add space for a few elements at a time: don’t just add one slot when
resizing. But how many should we add? 57 107 And what impact would our choice have on the run
time?

This is where we will pick up next lecture. Specifically, we have two questions to consider:
1. How much should we grow the array by when extend it? Can we make a smart choice that
saves the linear time cost?
2. And what about addFirst? There’s never extra room at the beginning, so even if we fix

addLast, is addFirst doomed to linear run time?

Tune in next time ...

	Recap of Where we Are
	Resizing Arrays
	Running Time of addLast – Part 1

