
Lesson: Memory Diagrams with Addresses Explicit

Activity: Draw the memory diagram with addresses for the following program

Activity: Memory layouts of lists

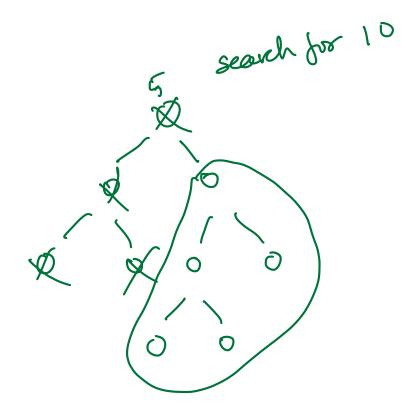
Consider the following layouts for the list [8, 3, 6, 4] - w hat program might generate this heap layout?

@1012	MutableList(start:@1017)	M = new Mutablelist C) M. add first (6) or addlar
@1013	Node(item:6, next:@1016) %	M. add Tisi (4) of our
@1014	Node(item:3, next:@1013) %	M. add first (3)
@1015	Course(name: "CSCI1410", enrollment: 200)	new Course () M. addlast (4) M. add First (8)
@1016	Node(item:4, next:null)	M. addlast (4)
@1017	Node(item:8, next:@1014) gt () 2	M. add Fist (8)
@1018		M. get (2)

Question: How would this memory layout be different if we were making an *immutable* list with the same sequence of addLast/addFirst calls?

Question: Imagine this list were named L in the environment. What sequence of memory objects get visited to compute L.get(2) [which should return 6]?

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order). What sequence of memory objects would get visited to compute L.get(2)?


Fic)	
U	

@1012	ConsecList	
@1013	8	get (0)
@1014	3	get (1)
@1015	6	sct (2)
@1016	4	g(t(i)) $g(t(2))$ $g(t(3))$
@1017		U
@1018		

set (i) must be m location address-of-L+1+1 if could get all items in consecutive, ordered locations, operations like set become constant time.

public static void main(String[] args) {

array are pieces [chunks of memory. They don't have methods like add First, etz.

