Lecture 10 — Addresses, Equality and ArrayLists Can think of the heap as a series of

addresses

- An address is a label for a
specific spot in computer memory
- Every object lives at one address

Lesson: Memory Diagrams with Addresses Explicit

// the 1list [3, 7]
MutableList<Integer> L = new MutablelList<>();
L.addFirst(7);

L.addFirst(3);) . p/FFM UJ.A}I
UG-~ wye i RERP

These are
addresses, or
references, that
refer to other

) wg’ objects in the heap

Activity: Draw the memory diagram with addresses for the following program

public void Example2() {
MutableList<Integer> L = new Mutablelist<>().;
L.addFirst(6);
Course ai = new Course(“CSCI 1410", 200); -HE,)‘V
\.addFirst(B); 1

STher” @w‘ov

| Y Troo) [%
N

u]/b (\

X003 C@Uﬁgﬁ’ S0 m
I
Neooy [0 [T @z |

loos

Al

\

=> When we make new objects (“new”) we use the next space in the heap
=> Addresses (or slots) in the heap are used (“allocated”) in the order in which
the code is run (when we call “new”)

Question: What does it mean for lists to be “the same”

public static void equalityExample() {

3

N\
\/.\ ° r— | @1020 | Mutebletist(start: @1022)

MutableList<Integer> L1 = new MutablelList<Integer>();
L1.addFirst(6);

L1.addFirst(8);

System.out.println("L1 is " + L1);

MutableList<Integer> L2 = new MutablelList<Integer>();
L2.addFirst(6); -

L2.addFirst(8);

System.out.println("L2 is " + L2);

DIEF NOATwL Fore LNAT /T NLduS Fou o)

// what do you expect each of these to produce? (what do == and .equals mean?) 7@7 'Z7ef

System.out.println(L1 == L2);
System.out.println(L1.equals(L2) ;@ WUAL_’)
System.out.println(L1.toString() == L2.toString())'3 31[1_(”6 -] &“\'\Wb

System.out.println(L1.toString().equals(L2.toString()));

@1021 | Node(item: 6, next: null)

@1022 | Node(item: 8, next: @1021)

;> @1023 | MutablelList(start: @1025)

@1024 | Node(item: 6, next: null)
2!

@1025 | Node(item: 8, next: @1024)
~

L1 == L2: “are L1 and L2 at the same location in memory”. (Also called “Address comparison”
“pointer comparison”)
=> No, this is false

.equals: Allows programmer to control what equality should mean for this type of object.
(“Structural comparison”)

=> Programmer would need to write equals method in MutableList (look at all elements, make
sure data is the same...).

Comparing strings with == will almost always fail => strings are objects, they live at different
locations in memory. (== is okay for int, bool, float, ...)

=> Should compare strings with .equals, ie. str1.equals(str2). This checks if the strings have
the same characters

Course c1
Course c2

new Course(“cs200”, 80)
new Course(“cs200”, 84)

Should c1.equals(c2) be true?

=> As programmers, we COULD define .equals to just compare the course name and not the
enrollment. This is a decision we would need to make when we write the equals method

Here’s an example of writing a Course class with an equals method:

public class Course {
private String name;
private int enrolled;

@0verride
// Example of an equals method. Since equals can be called with any
// other object as the argument, we use type Object for the parameter
public boolean equals(Object otherObj) {
if (!(otherObj instanceof Course)) {
// if otherObj isn't a Course, this and otherObj aren't equal
return false;
} else { N
Course otherC = (Course)otherObj; // tell Java otherObj is a Course

return (this.name.equaIslofﬁerc.name)ﬁ

In this example, we say that two Course
are objects are equal if they have the
same name--it's up to the programmer to
decide what fields matter!

Since someQObj is type Object, we need to tell Java that someQbj is really a Course, even
though it thinks otherwise.

This syntax is called "casting", and it's used to change how Java thinks about a certain
datatype. Beware, though: if otherObjisn't the correct type when this code is run, the
program will crash!

(In this course, casting is something we'll only need in a few specific situations (like equals() methods), so you
don't need to worry about it too much--we'll generally tell you when you need it.)

