
Lecture 10 – Addresses, Equality and ArrayLists

Lesson: Memory Diagrams with Addresses Explicit

// the list [3, 7]
MutableList<Integer> L = new MutableList<>();
L.addFirst(7);
L.addFirst(3);

MIND NULL DIFFERENT WAY

HEAT TO DRAW NEAR

10011MMNL.siISI
E2 ÉI

f me 4stsep1004

ii.ES
11005

i

Can think of the heap as a series of
addresses

 - An address is a label for a
specific spot in computer memory

 - Every object lives at one address

These are
addresses, or
references, that
refer to other
objects in the heap

Activity: Draw the memory diagram with addresses for the following program

public void Example2() {
MutableList<Integer> L = new MutableList<>();
L.addFirst(6);
Course ai = new Course(“CSCI 1410”, 200);
L.addFirst(3);

}

HEAD

1001 TIEH
d

now

fire

03IwH
110041171hL
1005

=> When we make new objects (“new”) we use the next space in the heap

=> Addresses (or slots) in the heap are used (“allocated”) in the order in which
the code is run (when we call “new”)

Question: What does it mean for lists to be “the same”

public static void equalityExample() {
MutableList<Integer> L1 = new MutableList<Integer>();
L1.addFirst(6);
L1.addFirst(8);
System.out.println("L1 is " + L1);

MutableList<Integer> L2 = new MutableList<Integer>();
L2.addFirst(6);
L2.addFirst(8);
System.out.println("L2 is " + L2);

// what do you expect each of these to produce? (what do == and .equals mean?)
System.out.println(L1 == L2);
System.out.println(L1.equals(L2));
System.out.println(L1.toString() == L2.toString());
System.out.println(L1.toString().equals(L2.toString()));

}

@1020 MutableList(start: @1022)

@1021 Node(item: 6, next: null)

@1022 Node(item: 8, next: @1021)

@1023 MutableList(start: @1025)

@1024 Node(item: 6, next: null)

@1025 Node(item: 8, next: @1024)

I
I

DIFF NOTATIONS FOR WHAT IT MEANS FOROBJETS
TO BE

I 0102 cause
STRING STRING

v1

12 7

L1 == L2: “are L1 and L2 at the same location in memory”. (Also called “Address comparison”
“pointer comparison”)

 => No, this is false

.equals: Allows programmer to control what equality should mean for this type of object.
(“Structural comparison”)

 => Programmer would need to write equals method in MutableList (look at all elements, make
sure data is the same…).

Comparing strings with == will almost always fail => strings are objects, they live at different
locations in memory. (== is okay for int, bool, float, …)

 => Should compare strings with .equals, ie. str1.equals(str2). This checks if the strings have
the same characters

=> As programmers, we COULD define .equals to just compare the course name and not the
enrollment. This is a decision we would need to make when we write the equals method

Course c1 = new Course(“cs200”, 80)

Course c2 = new Course(“cs200”, 84)

Should c1.equals(c2) be true?

Since someObj is type Object, we need to tell Java that someObj is really a Course, even
though it thinks otherwise.

This syntax is called "casting", and it's used to change how Java thinks about a certain
datatype. Beware, though: if otherObj isn't the correct type when this code is run, the
program will crash!

(In this course, casting is something we'll only need in a few specific situations (like equals() methods), so you
don't need to worry about it too much--we'll generally tell you when you need it.)

In this example, we say that two Course
are objects are equal if they have the
same name--it's up to the programmer to
decide what fields matter!

