Lecture 9 handout — generics, equality, lists in memory

Review the Environment and Heap — how can each be changed?

// formerly NodelList
public class Link implements IList<T> {
T first;
IList<T> rest;
——

public Link addFirst(T newElt) {
return new Link(newElt, this); }

} }

public T getFirst() {
return this.first;
}
}

public class Boa {
string name;
int length;
string eats;

public growBy(int amt) {
this.length = this.length + amt

public void example() {

Boa bigBoa = new Boa("Champ", 124, "peas");
Boa babyBoa = new Boa("Junior", 2, "milk");
Link<Boa> theBoas = new Link<>(); // Note:

theBoas = theBoas.addFirst(bigBoa);
@babyBoa .growBy(1);

System.out.println(theBoas.getFirst().length);

}
Ewv ANEAP
(=274 O —
Bt Bpo— ——T——= %"i
U spmp”
|2 Y

BACY Pot @

7 PoA s

Takeaways: manipulating objects in memo
=> Only "name = " changes the environment
=> |f we want to change the heap: @

- "new" makes new objects
- Can change fields objects with
"obj.field"

IMMUTABLE LIST

17‘:'(”5 LENCTR += ’\ Note: the name bigBoa is NOT in the

heap! when we run:
theBoas.addFirst(bigBoa),

we tell addFirst to use the OBJECT that
the name "bigBoa" references (eg.
"Champ")

When bigBoa changes later, the list node is
unaffected!

Lk

| TEM-™
PEST: A

Question: does list-immutability extend to the contents of the list elements?Defining our MutableList
No! Immutability refers to the structure (ie, the chain of NodeList/Link objects) => does not

affect changes to objects inside the list (eg. "junior")!

Building a Mutable List

Goal: want a list represented by a concrete object, which avoids
// the 1list [3, 7] Some of the hassle of reassigning names with the NodeList/Link.

¢ MutablelList<Integer> L = new MutablelList<>();
@’ L.addFirst(7);

U.addFlrSt(B) ;
3 Idea: new class for MutableList, which has a field "Start" which
points to the chain of nodes.

=> Each time we add to the list, start gets reassigned to point to

the new "head" of the list
=> As we add nodes, "L" is unchanged!

Ly NP

L \> MuragLe /.1.(7/'
TALT — MLl

For more info on why we have both mutable and immutable lists, see the notes for lecture 8.

(See next page, and posted code example, for the implementation)

Defining our MutablelList

Here's our initial definition:

class MutablelList {
Node start; // Front of the list

class Node {
int item; // Data
Node next; // Makes chain of nodes

How do we write addFirst? addFirst's goal is to create a new node at the beginning of the list.
This would require three things:

- Make a new object for the new node

- The "next" field of the new object needs to point to the old start of the list (ie, this.start)

--this.start needs to be reassigned to point to this new object (which will now be the start of
the list!

class Mutablelist {
//

public void addFirst(int newElt) {
this.start = new Node (newElt, this.start)

For more on how "this" works, see the next few pages.

BAckeroulD | New THL” ooens

Consider the following code:
Course visa = new Course(“visa120”, 18)
Course ¢s200 = new Course(“cs200” 80)

@ visa.enroll()
@ cs200.enroll()

VI5A™ > [Covasy Si/

When we call enroll() on each object, Java will set up the name “this” to point to
the object on which it was called.

D Visa. Emeor() 1

: TS, EMROLLMENT + 5 //

When visa.enroll() returns, the name this is removed.

When we call cs200.enroll(), Java again sets up “this”—now it points to the
¢s200 object.

&) <szeo, amtort ()
TAIS, EMROLLMENT += //

Question: Does list-immutability extend to the contents within list elements?

public static void courseExample() {

q3 Course visa = new Course("visa120", 18);

fz)ILlst<Course> C1 = new Emptylist<Course>(); // NOTE -- IMMUTABLE LIST
C1 = C1.addFirst(new Course("csci200", 470)%@9
C1 =pC1.addFirst(visa);
Visa.enroll();

// what do we expect to see here?
System.out.println(C1);

ey R
® VISA DUSE

M!A /20
&

d

L) " U,,@ LST

194
—“/‘
ILST 7[5 oo
AT 1[0

pV=

FV/ZT'!',
T\
[for reference for this question] \
Common mistake: the link does not contain the name
(from the end) visa. First just “points to” or “refers to”
public class Link<T> implements IList<T> { the visa object itself.
T first; => The heap can’t look back to the environment, it only
IList<T> rest; refers to objects

public IList addFirst(T newElt) {
return new Link(newElt, this);

}

Lecture 9 handout — generics, equality, lists in memory, lists with addresses

Question: How do we make our List classes have elements of any type (not just int)?

' 4
publi¢c class Node {
_" 1% first;

Node next;

) ~— T/7E VARIABLE
public class MutableList(T){ [UJUALL—y S‘,NéLE CApﬁ/ﬂ/

Node start; // front of the list
-
T | p1TERS)
public void addFirst(i\X”c newItem) {
newNode = new Ngfle(newItem, this.start);

this.start = newNode;
return this;

Wo =
}} vecrz f\

- LINENEVER WE
Ex . e /v THE Yelerer LSE A Gtletic
L wreo Lier 4 STeimt = T, D 70
A W TR
Aemerer!

Question: What does it mean for lists to be “the same” 7 7/;,1 L
DiScvss: ARE THESE LiL7S LqUAL: [] —>

public static void equalityExample() e e -
MutablelList<Integer> L1 = new MEEableList<Integer>();
L1.addFirst(6); -
L1.addFirst(8);

System.out.println("L1 is " + L1); Z‘ <Z- /wz’—

MutablelList<Integer> L2 = new MutableList<Integer>();
L2.addFirst(6); - @ > @
L2.addFirst(8);

System.out.println("L2 is " + L2);

// what do you expect each of these to produce? (what do == and .equals mean?)
System.out.println(L1 == L2); —> SAME. OBJecTC IV 7“57‘?7
System.out.println(L1.equals(L2));

System.out.println(L1.toString().equals(L2.toString())); names refer to the same object
¥ => Object equality

.equals() method: Programmer (of MutableList in this case) will tell us what
equality means

=> This is more flexible, and could let us check structural equality: e.g., could
compare, eg. all elements are the same content, same order, etc.

=> As the developers of the MutableList class, we could decide which
constraints to pick, and therefore what it means for two objects to be considered
equal!

