
Lecture 9 handout — generics, equality, lists in memory

Review the Environment and Heap – how can each be changed?

// formerly NodeList
public class Link implements IList<T> {

T first;
IList<T> rest;
...

public Link addFirst(T newElt) {
return new Link(newElt, this);

}

public T getFirst() {
return this.first;

}
}

public class Boa {
string name;
int length;
string eats;

public growBy(int amt) {
this.length = this.length + amt

}
}

public void example() {
Boa bigBoa = new Boa("Champ", 124, "peas");
Boa babyBoa = new Boa("Junior", 2, "milk");
Link<Boa> theBoas = new Link<>(); // Note: IMMUTABLE LIST
theBoas = theBoas.addFirst(bigBoa);
babyBoa.growBy(1);

System.out.println(theBoas.getFirst().length);
}

Question: does list-immutability extend to the contents of the list elements?Defining our MutableList

i

THISLENGTH

EV HEAT

BIGBos
BIKE

B

LINK
Takeaways: manipulating objects in memory

 => Only "name = " changes the environment

 => If we want to change the heap:

 - "new" makes new objects

 - Can change fields objects with

 "obj.field"

Note: the name bigBoa is NOT in the
heap! when we run:

theBoas.addFirst(bigBoa),

we tell addFirst to use the OBJECT that
the name "bigBoa" references (eg.
"Champ")

When bigBoa changes later, the list node is
unaffected!

No! Immutability refers to the structure (ie, the chain of NodeList/Link objects) => does not
affect changes to objects inside the list (eg. "junior")!

Lesson: Memory Diagrams with Addresses Explicit

// the list [3, 7]
MutableList<Integer> L = new MutableList<>();
L.addFirst(7);
L.addFirst(3);

ELECTRIC

f

MÉLELISTIIIa

E E
HIIIII

Building a Mutable List

Goal: want a list represented by a concrete object, which avoids
some of the hassle of reassigning names with the NodeList/Link.

Idea: new class for MutableList, which has a field "Start" which
points to the chain of nodes.

=> Each time we add to the list, start gets reassigned to point to
the new "head" of the list

=> As we add nodes, "L" is unchanged!

For more info on why we have both mutable and immutable lists, see the notes for lecture 8.

(See next page, and posted code example, for the implementation)

Defining our MutableList

class MutableList {

 // . . .

 public void addFirst(int newElt) {

 this.start = new Node(newElt, this.start)

 }

}

class MutableList {

 Node start; // Front of the list

}

class Node {

 int item; // Data

 Node next; // Makes chain of nodes

}

Here's our initial definition:

How do we write addFirst? addFirst's goal is to create a new node at the beginning of the list.
This would require three things:

 - Make a new object for the new node

 - The "next" field of the new object needs to point to the old start of the list (ie, this.start)

 - this.start needs to be reassigned to point to this new object (which will now be the start of
the list!

For more on how "this" works, see the next few pages.

B ROUNDI.HNSIRKS

vis

9
ff.is

7
III

VISA ENROLLS

THIS ENROLLMENT L

CS 200 ENROLL

THIS ENROLLMENT L

Consider the following code:

Course visa = new Course(“visa120”, 18)

Course cs200 = new Course(“cs200” 80)

visa.enroll()

cs200.enroll()

When we call enroll() on each object, Java will set up the name “this” to point to
the object on which it was called.

When visa.enroll() returns, the name this is removed.

When we call cs200.enroll(), Java again sets up “this”—now it points to the
cs200 object.

Question: Does list-immutability extend to the contents within list elements?

public static void courseExample() {
Course visa = new Course("visa120", 18);
IList<Course> C1 = new EmptyList<Course>(); // NOTE -- IMMUTABLE LIST
C1 = C1.addFirst(new Course("csci200", 470));
C1 = C1.addFirst(visa);
visa.enroll();

// what do we expect to see here?
System.out.println(C1);

}

[for reference for this question]

public class Link<T> implements IList<T> {
T first;
IList<T> rest;

public IList addFirst(T newElt) {
return new Link(newElt, this);

}
}

END
ask

I
4 EMPTY

iii

Common mistake: the link does not contain the name
(from the end) visa. First just “points to” or “refers to”
the visa object itself.

=> The heap can’t look back to the environment, it only
refers to objects

Lecture 9 handout — generics, equality, lists in memory, lists with addresses

Question: How do we make our List classes have elements of any type (not just int)?

public class Node {
int first;
Node next;

}

public class MutableList {
Node start; // front of the list

public void addFirst(int newItem) {
newNode = new Node(newItem, this.start);
this.start = newNode;
return this;

}
}

CT
TX

TYPE VARIABLE
USUALLY SINGLECAPITAL

x ̅ LETTERS

NODECTP
WHENEVER WE

E.MIL NGINTEPEPARAMETER USEA GENERIC

LINKEDLIST STRING TYPE NEEDTO

FILL IN TYPE
PARAMETER

Question: What does it mean for lists to be “the same”

public static void equalityExample() {
MutableList<Integer> L1 = new MutableList<Integer>();
L1.addFirst(6);
L1.addFirst(8);
System.out.println("L1 is " + L1);

MutableList<Integer> L2 = new MutableList<Integer>();
L2.addFirst(6);
L2.addFirst(8);
System.out.println("L2 is " + L2);

// what do you expect each of these to produce? (what do == and .equals mean?)
System.out.println(L1 == L2);
System.out.println(L1.equals(L2));
System.out.println(L1.toString() == L2.toString());
System.out.println(L1.toString().equals(L2.toString()));

}

DISCUSS ARE THESE LISTSEQUAL L ME

L2 ML
T

SAME OBJECTS IN HEAP

The == operator checks if two
names refer to the same object

=> Object equality

.equals() method: Programmer (of MutableList in this case) will tell us what
equality means

 => This is more flexible, and could let us check structural equality: e.g., could
compare, eg. all elements are the same content, same order, etc.

 => As the developers of the MutableList class, we could decide which
constraints to pick, and therefore what it means for two objects to be considered
equal!

