

CREATING A LIST

of 8

I

In our constructor, we create the object
that represents the list.

(It’s also common to write “new
LinkedList<IAnimal>()” instead

Creates a field called allAnimals that holds
elements of type IAnimal:

 - The type IAnimal is an interface—all objects
that implement the interface (Dillo, Boa,
FruitFly, …) can fit in this list, which is what we
want for our Zoo!

Here’s another way that also shows something else we’ll use —our old Zoo had a
constructor that used two arguments. A class can have multiple constructors for different
ways to set up data.

We can keep this constructor and modify it to *add* the two animals to our new list!

Java’s LinkedList has an add() method to
add elements to the list. Here, we use it
to add ani1 and ani2

Important concept: in this example, add()
modifies the object allAnimals so it
contains ani1 and ani2.

In functional programming, it’s common to
do this by making a new list—instead,
Java modifies the existing list!

We’ll see this more in the coming weeks.

So how do we use lists?

In the past, we’ve used recursion. We could do that, but recursion can
be messy in Java. Let’s learn another common way.

A GENERAL STRUCTURE FOR ITERATION

yet

j

Set up the variable for the
result

The starting value (here, 0),
will be the result if the list is
empty

“Iterate over (or “Loop over”) all objects in
allAnimals:

 - Loop runs once per animal in list. The code
inside the brackets is called the “body” of the loop

 - The name “ani” is added to the environment in
the loop—this is often called the “loop variable”

 - The loop variable usually has the same type
as the list (IAnimal)

 - On each “iteration” of the loop, ani refers to a
different element of allAnimals

In the body of the loop, we update something—
here, it’s “count,” the variable we’re using to
keep track of the result.

(This particular version also could be written as
“count += 1” or “count++”)

When the loop ends, we’re (usually)
done!

Now we use the return keyword to tell
Java what the result of our method is

The type of what we return must match
the method’s return type, “int”

(from public int nonNormalCount…)

TERROR

A

In the normalAverageLength() method, we had written this: (see code example for more)

This is a problem for two big reasons.

Since the class Zoo can access an animal’s fields, it can also modify them! In a 1.
big system, we usually don’t want this, since it means other parts of the code
(written by different people) can modify our data!

ani has type IAnimal. Not all animals have a length field, only those that extend 2.
SizedAnimal! (FruitFly, for example, does not extend SizedAnimal)

Public/Private/Protected fields (Addresses Problem 1)

As authors of the SizedAnimal class,we get to decide how other classes
can access our fields. If we want other classes to be able to get an
animal’s length, we can write a method like this (in SizedAnimal):

So how do we give Zoo access to the length field?

If you mark a field or method as private, it can’t be used outside of that class (in this •
case, SizedAnimal)

A private field can ONLY be used within the class where it is declared (ie, ◦
SizedAnimal). Not even Dillo or Shark could use it in this form!

A field or method marked as protected can only be used by the class where it’s •
declared, and its subclasses

Marking “length” as protected would allow it to be used by Dillo, Boa, Fish, or ◦
anything that extends these (like Shark)

A field or method marked public can be used by any other class
•
For fields, this means that other parts of the code can modify them!
◦
Thus, in Java we usually mark fields as private unless we need them to be public
◦

The idea is that we ONLY do this when we decide that a particular field
should be exposed

ani.length

Problem 2: not all animals have getLength()

IF

We just added getLength to SizedAnimal, which provides the method for all animals
that extend SizedAnimal.

But in the Zoo class, our list is of type IAnimal. What does Java know about
IAnimal?

At this point, all we can do with an IAnimal is call isNormalSize. To use getLength() we
need to add it to our interface so that we can do this for all animals. Here’s the most
important bits, see the full posted code for details.

Excerpt from averageNormalLength()

