(CS200: Migrating to Java — Classes, Methods, and Tests

Kathi Fisler
January 31, 2022

Motivating Question

How can we create a zoo with multiple kinds of animals?

1 Under the Hood: Classes, Objects, Naming, and new

To understand how Java ”works”, we will map out what happens under the hood as you compile and
run programs. Java organizes your programs and computations into four main ”areas” under the hood:
known classes, existing objects, named values, and the current expression that we are evaluating
(sometimes called a program counter) . Before you compile a program, all of these are empty (well, mostly:
Java has a bunch of built-in classes, but we haven’t talked about those yet). Figure 1 shows an empty map
from before you compile a program.

Different areas of the map get populated by different constructs and operators in Java. Roughly
speaking, the class construct modifies the known classes area (in the compile step), new modifies the
existing objects area (in the run or testing steps), and = modifies the named values area (in the run
step). The first few slides in the PDF alongside these notes illustrate what happens here.

What should you understand from this?

e The known classes area gets modified when you compile the program — that’s when Java finds out
what classes your program knows about.

e The existing objects and named values areas get modified when you run or test the program.
While we’ve only looked at defining examples so far, you can imagine from your prior programming
experience that you could create objects and name values frequently while running a program. These
areas are much more dynamic.

e Objects are only accessible through names. Under the hood, there are often objects that exist but
aren’t accessible. This isn’t a problem!. What matters is that you have names for the objects that you
need to get to. This is actually a fairly complex topic that we will revisit throughout the course.

We will return to this picture throughout the course.
How does calling a method interact with these pieces of memory?
Imagine that you have our Dillo class, and you run the following two lines of code based on it:

Dillo babyDillo = new Dillo (8, false);
boolean answer = babyDillo.canShelter();

Look at the call to the method in the second line. It has the form babyDillo.canShelter (). Remember
that all methods live inside objects? If you want to call a method, you need to tell Java where to find the
method. Here, we are telling Java to “look inside babyDillo, get the canShelter method, and call it” (the
. means “look inside”).

Once Java is inside the babyDillo object, it also has access to the length and isDead fields within that
object. These are denoted by the this.length and this.isDead expressions in the code.



KNOWN CLASSES HEAP (OBJECTS)

ENVIRONMENT

EXPRESSION

Figure 1: A blank map for tracking objects and names.



=W N =

[\V]

[
H O © 00O Utk Wi

—_

Under the hood, when you call a method via an object, Java adds the name this to the environment,
and has it refer to the referring object. Thus expressions like this.length work normally: find the object
named this, dig into it, and extract the length field.

There’s a link alongside these notes on the lectures page with a PDF of slides showing how this works.

2 Creating Data with Variants: Zoos and Animals

So far, we’ve defined a class for Dillos. What if we were managing an entire zoo with other kinds of animals
as well? We would need to define classes for those other kinds of animals. We would probably have methods
or fields in other classes that could hold any kind of animal (for example, a class storing information about
shows at the zoo might need fields for the featured animal and the duration of the show: the featured animal
could be from one of several classes).

Specifically, we might want to create the following class:

where animall and animal2 could be one of several different types of animals.

In this section, we will add a second kind of animal, create a type for animals, use it in the zoo class,
and write a method isNormalSize that determines whether an animal’s length is in the usual range for its
kind.

2.1 Defining Data with Variants

Data has variants if it has encompasses other kinds of data with different components. Animals have
variants (not all animals have the same attributes), as do shapes (different attributes define circles and
rectangles, for example). You saw data with variants (or cases) in CS111/17/19. For example, here’s a
ReasonML type definition for animals, containing armadillos and Boa constrictors (where boas have a name,
length, and favorite food) — the Pyret version would use a similar-looking data block:

Let’s define the boa class in Java:

To introduce a new type that is simply one of several classes, we use a construct called an interface. We
first create an interface, then we connect it to the classes that belong to it. First, here’s the code to create
the interface.




— O © 00 O Ui Wi+

—

=W N =

Right now, all this interface does is declare a new type name called Ianimal (by convention, interfaces
in Java start with a capital letter 1). We will do more with it shortly.

The interface declaration introduces IAnimal as a type name, but we have not yet made Boas and Dillos
valid variants of animals. To do that, we add IAnimal to the first line of each of the Boa and Dillo class
definitions through an implements clause, as follows:

public interface IAnimal {}

public class Dillo implements IAnimal ({
int length ;

}

public class Boa implements IAnimal {
String name ;

In Java, implements achieves two things: it declares that a given class is a valid value of the type with
the name of the interface, and it requires the class to satisfy all constraints of the interface. TAnimal doesn’t
yet impose constraints on its implementing classes, but we’ll get to that shortly.

If you are coming from previous Java experience and would not have used an interface here, hold that
thought. We will address your question in the next lecture.

What about examples of data? How do we create TaAnimals? We can only create objects from classes,
not from interfaces. Every Dillo and every Boa is an example of TAnimal, so there’s no need for you to
create additional examples of data just because you added an interface.

With this interface, we can now finish the Zoo class:

public class Zoo {
public IAnimal animall;
public IAnimal animal2;

2.2 Methods over Data with Variants

Let’s write a method on IAnimal that determines whether the animal is normal size for its type. We'll say
that a boa is normal size if its length is between 30 and 60 and an armadillo is normal size if its length is
between 12 and 24.

We remarked earlier that in OOP, all methods live with their corresponding data. Since the data on
animals lie in the Boa and Dillo classes, the isNormalsize method should live there too. We therefore put
an isNormalSize method in each of the Boa and Dillo classes (for brevity, we omit the Dillo’s canshelter
method). The code is in Figure 2.

Wait — we now appear to have two methods, each called isNormalsize. How does Java know which one
to use?

Remember that we call methods through objects, and each object carries a copy of its methods. So if
you call

babyDillo.isNormalSize ()

Java will use the version of the method from the Dillo class. This feature of choosing which version of
a method to use based on the class for an object is called dispatch. This is another fundamental element
of OOP. For now, all you need to understand is that you get to methods through objects, so you can have
different ”versions” of the same method in different classes, and Java will find the right one automatically
(by going through the object).



0 O U WN

Figure 2: Dillos and Boas with the isNormalSize method



0~ O O WN

= e b e e e
N O Ut W= OO

[\

2.3 Requiring a Method in all Classes in an Interface

Now that we have the i sNormalsize method on both Boas and Dillos, we can write a method in the zoo class
to check whether both animals are of normal size (this also lets us show you how to write if-expressions in
Java). For brevity, the code below omits the constructor (since it follows the standard constructor pattern):

Hmm, IntelliJ is flagging an error on the calls to isNormalSize. Why?

Java takes two passes over your program when you attempt to run it. In the first pass, it makes sure
that the types of objects are consistent with the method calls that you make using those objects. Here, we
are trying to call

IntelliJ is reporting that isNormalSize () is undefined for type IAnimal. While every IAnimal class
that we’ve written so far has a method called isNormalSize, nothing requires those classes to have that
method. We could add another IAnimal that didn’t have that method. Hence Java reports an error.

We address this by expanding the Tanimal interface to require isNormalSize:

Now, if a class implements IAnimal but does not include an isNormalSize method, Java will flag an
error. This is your first example of a constraint that an interface imposes on its implementing classes.

3 Review/Summary on Types

At this point, we’ve seen three kinds of types in Java:

e built in types for “atomic” data, like int, boolean, string
e Classes, like Dillo

e Interfaces, like TAnimal

The first is clearly distinct from the other two, but how do the other two compare?
Concretely, imagine that we used Dillo for the type of one armadillo and TaAnimal for another in the
AnimaTest class. What difference would that make?



=W N =

public class AnimalTest {
Dillo adultDillo = new Dillo (24, false);
IAnimal hugeDeadDillo = new Dillo (65, true);

We mentioned earlier that Java takes two passes when running your program: one (called compilation)
to make sure that all the types (and some other constraints) make sense, and one to actually execute the
code. Compilation performs its checks using information that can be found directly in class and interface
definitions. What does the compiler know about Dillos, just from looking at the class definition?

e They have fields length and isDead

e They have methods isNormalsize and canShelter
What does the compiler know about IAnimals, again looking only at the interface definition?
e They have an isNormalSize method

So if you try to write hugeDeadDillo.canShelter () when hugeDeadDillo has type IAnimal, the
compiler will raise an error, because it has no guarantee that all IAnimals have that method. But the
method is clearly there — you can see it, so why can’t Java? Because you are chaining together information:
that hugeDeadDillo is actually a Dillo, and that Dillos have the canshelter method. Java doesn’t do this
sort of multi-step reasoning (we’ll try to explain why later in the semester). It only looks at what is known
from the class or interface itself.

Exercise: play around with the types and interface annotations within the animal code, and see when
the compiler raises errors. What if you take the TAnimal annotation off the Dillo class? What if you take
isNormalSize () out of the interface? What if you change the types on the specific animals when defining
them in AnimalTest. Play with this until you think you have a sense of how the types work, and come to
office hours or post on Piazza if you have questions.



