
KNOWN CLASSES HEAP (OBJECTS)ENVIRONMENT
public class Dillo {
 public int length;
 public boolean isDead;

 public Dillo(int len, boolean isDead) {
 this.length = len;
 this.isDead = isDead;
 }

 public boolean canShelter() {
 return this.length > 60 && this.isDead;
 }
 public boolean isBigger(Dillo other) {
 return this.length > other.length;
 }
}

class AnimalsTest {
 Dillo babyDillo = new Dillo(8, false);
 Dillo medDillo = new Dillo(20, true);

 @Test
 public void testMakeDillo() {
 assertEquals(8, babyDillo.length)
 }
 @Test
 public boolean testCanShelter() {
 assertEquals(false,
 babyDillo.canShelter());
 }
 @Test
 public boolean testIsBigger() {
 assertEquals(true,
 medDillo.isBigger(babyDillo));
 }
}

a

BBYDino

MEDDino

Dillo

length: 8

isDead: false

canShelter()

isBigger()

Names Java knows about

We say that names are “bound” to objects

Dillo

length: 20

isDead: true

canShelter()

isBigger()

Using “new” creates an object using its constructor. Here, we make two
Dillos and give each one a name.

The assignment operator (=) maps a name to an object. We say that these
names are “references” to individual objects that live in the heap.

KNOWN CLASSES HEAP (OBJECTS)ENVIRONMENT
public class Dillo {
 public int length;
 public boolean isDead;

 public Dillo(int len, boolean isDead) {
 this.length = len;
 this.isDead = isDead;
 }

 public boolean canShelter() {
 return this.length > 60 && this.isDead;
 }
 public boolean isBigger(Dillo other) {
 return this.length > other.length;
 }
}

class AnimalsTest {
 Dillo babyDillo = new Dillo(8, false);
 Dillo medDillo = new Dillo(20, true);

 @Test
 public void testMakeDillo() {
 assertEquals(8, babyDillo.length)
 }
 @Test
 public boolean testCanShelter() {
 assertEquals(false,
 babyDillo.canShelter());
 }
 @Test
 public boolean testIsBigger() {
 assertEquals(true,
 medDillo.isBigger(babyDillo));
 }
}

BABYDo

MEDDito

Dillo

length: 8

isDead: false

canShelter()

isBigger()

Dillo

length: 20

isDead: true

canShelter()

isBigger()

When java runs testMakeDillo, it sees the name “babyDillo” and
looks up this name in the environment.

Then, it uses the “.” operator to look inside the object referenced
by babyDillo. From there, it can access components of this object.

Here, we access the length field.

KNOWN CLASSES HEAP (OBJECTS)ENVIRONMENT
public class Dillo {
 public int length;
 public boolean isDead;

 public Dillo(int len, boolean isDead) {
 this.length = len;
 this.isDead = isDead;
 }

 public boolean canShelter() {
 return this.length > 60 && this.isDead;
 }
 public boolean isBigger(Dillo other) {
 return this.length > other.length;
 }
}

class AnimalsTest {
 Dillo babyDillo = new Dillo(8, false);
 Dillo medDillo = new Dillo(20, true);

 @Test
 public void testMakeDillo() {
 assertEquals(8, babyDillo.length)
 }
 @Test
 public boolean testCanShelter() {
 assertEquals(false,
 babyDillo.canShelter());
 }
 @Test
 public boolean testIsBigger() {
 assertEquals(true,
 medDillo.isBigger(babyDillo));
 }
}

MEDDILO

F

I

Dillo

length: 8

isDead: false

canShelter()

isBigger()

Dillo

length: 20

isDead: true

canShelter()

isBigger()

(Environment for canShelter)

To call a method inside an object, we do the same
thing—we find babyDillo in the environment and
find the object it references, then we access the
canShelter method inside that object.

We can think of the environment as divided into parts. When we call any method, it can
add names to its own part of the environment—these go away when the method returns.
This purple box is canShelter’s part of the environment.

canShelter uses the name “this”. When we call canShelter, Java sets up the name “this”
to point to the Dillo object where the method lives. In this way, “this” means “the current
object where we are in right now” and not any other Dillo object.

Note: canShelter and babyDillo aren’t special. All code must live inside a class, so every
method has a “this”. We sometimes don’t write or draw it in test files to save on typing. For
example, we could refer to babyDillo in AnimalsTest as this.babyDillo

KNOWN CLASSES HEAP (OBJECTS)ENVIRONMENT
public class Dillo {
 public int length;
 public boolean isDead;

 public Dillo(int len, boolean isDead) {
 this.length = len;
 this.isDead = isDead;
 }

 public boolean canShelter() {
 return this.length > 60 && this.isDead;
 }
 public boolean isBigger(Dillo other) {
 return this.length > other.length;
 }
}

class AnimalsTest {
 Dillo babyDillo = new Dillo(8, false);
 Dillo medDillo = new Dillo(20, true);

 @Test
 public void testMakeDillo() {
 assertEquals(8, babyDillo.length)
 }
 @Test
 public boolean testCanShelter() {
 assertEquals(false,
 babyDillo.canShelter());
 }
 @Test
 public boolean testIsBigger() {
 assertEquals(true,
 medDillo.isBigger(babyDillo));
 }
}

MEDDILO

É

Dillo

length: 8

isDead: false

canShelter()

isBigger()

Dillo

length: 20

isDead: true

canShelter()

isBigger()

babyDillo.isBigger(medDillo));

(Environment for isBigger)

Calling isBigger is similar. There’s one more quirk, though: the isBigger method
takes in an argument, “other”. Just like any other variables, “other” gets a
name in isBigger’s environment?

Where does it point? It points to the same object that we named when calling
isBigger—in this case, it’s medDillo.

Then, when isBigger is run, there are two names in the environment:

 - “this” refers to the current Dillo object (babyDillo)

 - “other” refers to the other object passed as an argument (medDillo)

(This is a pretty advanced example so it’s okay if this is tough now—we’ll spend
a lot more time drawing out similar things later in the semester.)

And we could create the Zoo like this:

Expanding our Zoo: Finally, what if we wanted to make a class to represent a Zoo, where a zoo holds multiple
animals?

We could start by making a Zoo class that holds two Dillos, like this:

This is an example of how to make an object that holds other
objects. This is a good start.

But our Zoo is pretty boring if it holds just DIllos. What if we
wanted it to hold other types of Animals like the Boa (next
page)?

How could we change our Zoo to hold different kinds of
animals? We’d like to have use a type for animal1 or animal2
that says “Dillo or Boa”? We’ll see how next class.

public class Boa {
 public string name;
 public int length;
 public string eats;

 public Boa (String name,
 int length,
 String eats) {
 this.name = name ;
 this.length = length ;
 this.eats = eats ;
 }
 }

public class Dillo {
 public int length;
 public boolean isDead;

 Dillo(int l, boolean isD) {
 this.length = l;
 this.isDead = isD;
 }

 public boolean canShelter() {
 return this.length > 60 && this.isDead;
 }
}

